META-ANALYSIS

The analgesic effect of erector spinae plane block in thoracic surgery: a systematic review and meta-analysis of randomized controlled trials

Yi Li¹, You-Ling Hou¹, Hong-Yu Guan¹, Hong-Xia Luo¹,*

¹Department of Anesthesiology, Yongchuan affiliated Hospital of Chongqing Medical University, 402160 Yongchuan, Chongqing, China

*Correspondence luohongxia1232021@163.com (Hong-Xia Luo)

Abstract

Objectives: The aim of this study is to evaluate the analgesic effect of erector spinae plane block (ESPB) in patients undergoing thoracic surgery.

Methods: We systematically searched Embase, PubMed, The Cochrane Library, VIP database, CNKI, Wanfang database, CBM, from 2010 to December, 2020 to perform a meta-analysis of randomized controlled trials (RCTs) on the analgesic effect of ESPB in thoracic surgery patients. The primary outcome were postoperative pain scores at various time points.

Results: Eighteen studies with a total of 1303 patients were included. The meta-analysis found that ESPB reduced postoperative 48-hour pain scores at rest and movement at different time points compared with the control group, reduced the incidence of postoperative nausea and vomiting (PONV) (odds ratio, OR = 0.48, 95% CI = 0.33–0.71, \(P < 0.05 \)), and reduced the number of patient-controlled intravenous analgesia (PCIA) pressing times (mean difference, MD = −6.83, 95% CI = −8.73–−4.94, \(P < 0.05 \)).

Conclusions: Compared with general anesthesia (GA), GA combined with ESPB significantly decreases postoperative pain, PONV and opioids requirements following thoracic surgery.

Keywords
Erector spinae plane block; Thoracic surgery; Analgesia; Meta-analysis; Randomized controlled trial

1. Introduction

Pain following thoracic surgery procedures compromises respiratory function, increases the incidence of pulmonary complications, and extents the hospital stay [1]. Postoperative pain causes the release of chemicals and cytokines, which can make the body in a state of stress and adversely affect multiple organ systems [2]. If acute postoperative pain is not controlled in a timely and proper fashion, it can lead to chronic postsurgical pain in up to fifty percent of patients [3]. Therefore, improved postoperative analgesia mode is of great importance to thoracic surgery patients.

General anesthesia (GA) combined with patient-controlled intravenous analgesia (PCIA) is widely used in thoracic surgical procedures. However, this analgesia technique may lead to postoperative nausea and vomiting (PONV), respiratory depression, and drowsiness since the use of large amounts of opioids [4, 5].

With the rapid development of ultrasound-guided visualization techniques, GA combined with various regional blocks have become more and more popular in clinical practice. Previous studies have shown that anesthesia effects is greatly improved if the diffusion of local anesthetics in the blocked region is performed under ultrasound guidance [6, 7]. As one kind of regional block, the erector spinae plane block (ESPB) came out for the first time in 2016, Forero proposed: ESPB achieved good results in treating neuropathic pain [8]. Subsequent studies suggested that ESPB could also achieve good results when applied to perioperative analgesia during thoracic and abdominal surgery [9].

However, no researchers have conducted a systematic review and meta-analysis only focus on thoracic surgery, so the analgesic effect of ESPB in thoracic surgery patients is still inconclusive. Therefore, this study was undertaken to evaluate the analgesic effect of ESPB in thoracic surgery patients compared to patients undergoing only GA, and provide it with clinical application.

2. Methods

2.1 Materials and methods

We conducted a systematic review of the analgesic effect of ESPB in thoracic surgery patients based on the PRISMA principle. The study was registered on the PROSPERO platform. Registration number: CRD 42021223677.
2.2 Selection criteria

The inclusion criteria included studies involving thoracic surgery patients in randomized controlled trials (RCT), in which patients in the experimental group received single ESPB, compared to a control group which received no block or only normal saline. The primary outcome was postoperative pain scores at different time points using either a visual analogue scale (VAS) or a numerical rating scale (NRS). The secondary outcome was the incidence of PONV, and the number of PCA pressing times.

Exclusion criteria include non-thoracic surgery patients, non-RCT studies without the original data or data that could not be used for conversion; case reports, letters, repeated publications, and systematic reviews.

2.3 Search strategy

Embase, PubMed, The Cochrane Library, VIP database, CNKI, Wanfang database and CBM were searched by using the combination of subject words and free words. Search words included Erector spinae plane block, ESPB, ESP, thoracic, video-assisted thoracoscopic surgery, VATS, and randomized controlled trial, RCT, and so on. Although ESPB was first proposed in 2016, we searched the literature over the last ten years in order to avoid omissions. The retrieval time was from 2010 to December, 2020.

2.4 Literature screening and data extraction

After systematic and comprehensive literature retrieval, Endnote X7 software was used for literature selection and classification. Two researchers screened all literature according to the selection criteria to determine the final inclusion. Then they read the remaining literature independently, used the same form to record and analyze, and asked a third-party to arbitrate if inclusion could not be resolved. The extraction contents included: first author, publication time, sample size of both groups, puncture site, type and concentration of local anesthetics, VAS or NRS scores at different times, incidence of PONV, and the number of PCA pressing times. In the process of data extraction, two evaluators independently measured the relevant data expressed as graphs before calculating the mean value. Data presented as median (interquartile range) was uniformly converted into the form of mean and standard deviation according to the method provided in the Cochrane system evaluator’s manual.

2.5 Quality assessment

The Cochrane Manual RCT risk bias assessment tool was used for quality assessment, including random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other bias.

2.6 Statistical analysis

ReVman 5.3 statistical software was used for data processing and forest plot drawing. Measurement data were expressed by mean difference (MD) and 95% confidence intervals (CI), count data were expressed by odds ratio (OR) and 95% CI. The Q test and I² test were used to test for heterogeneity: if $P > 0.1$ and $I^2 < 50\%$, the heterogeneity was small and the data was analyzed by fixed effects model, when $P \leq 0.1$ or $I^2 \geq 50\%$, the heterogeneity was significant and sensitivity or subgroup analysis was conducted to find the cause. Random effects models were used when no source of heterogeneity was found.

3. Results

A total of 371 studies were retrieved, of which 18 RCTs were included [10–27]. There were 1303 patients: 652 in ESPB group and 651 in control group. The screening flow chart is shown in Fig. 1. The basic characteristics of the included literature are shown in Table 1. The Cochrane risk bias assessment results for all the references are displayed in Fig. 2.

3.1 Pain scores at different time points
3.1.1 Postoperative 2 hour pain scores

Among all included studies, twelve studies [10, 11, 13–15, 19, 20, 22–25, 27] and seven studies [10, 11, 13, 15, 23, 25, 27] reported postoperative 2 hour pain scores at rest or movement respectively. Pain scores of ESPB group were significantly lower than those of the control group at rest or movement. (MD = −1.98, 95% CI = −2.55−−1.42, $I^2 = 98\%$, $P < 0.05$; MD = −2.62, 95% CI = −3.40−−1.85, $I^2 = 95\%$, $P < 0.05$) (Fig. 3), the differences were statistically significant. There was great heterogeneity between studies, but no cause was found after conducting sensitivity and subgroup analyses.
FIGURE 2. Cochrane risk bias assessment.
FIGURE 3. Forest plots of postoperative 2 hour pain scores. (A) postoperative 2 hour pain scores at rest. (B) postoperative 2 hour pain scores at movement.

FIGURE 4. Forest plots of postoperative 8 hour pain scores. (A) postoperative 8 hour pain scores at rest. (B) postoperative 8 hour pain scores at movement.
FIGURE 5. Forest plots of postoperative 12 hour pain scores. (A) postoperative 12 hour pain scores at rest. (B) postoperative 12 hour pain scores at movement.

FIGURE 6. Forest plots of postoperative 24 hour pain scores. (A) postoperative 24 hour pain scores at rest. (B) postoperative 24 hour pain scores at movement.
FIGURE 7. Forest plots of postoperative 48 hour pain scores. (A) postoperative 48 hour pain scores at rest. (B) postoperative 48 hour pain scores at movement.

FIGURE 8. Forest plots of PONV.
TABLE 1. Characteristics of the included literature.

<table>
<thead>
<tr>
<th>Including literature</th>
<th>Sample (ESPB/control)</th>
<th>Puncture location</th>
<th>Local anesthetic dose</th>
<th>Control measures</th>
<th>Pain score scale</th>
<th>Outcome indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahadir 2019</td>
<td>30/30</td>
<td>T5</td>
<td>20 mL 0.25% bupivacaine</td>
<td>No block</td>
<td>VAS</td>
<td>1, 2</td>
</tr>
<tr>
<td>Bahadir 2020</td>
<td>30/30</td>
<td>T5</td>
<td>20 mL 0.25% bupivacaine</td>
<td>No block</td>
<td>VAS</td>
<td>1, 2</td>
</tr>
<tr>
<td>Bian 2019</td>
<td>30/30</td>
<td>T5</td>
<td>20 mL 0.5% ropivacaine</td>
<td>No block</td>
<td>VAS</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Chen 2020</td>
<td>59/59</td>
<td>Not clear</td>
<td>30 mL 0.5% ropivacaine</td>
<td>No block</td>
<td>VAS</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Lin 2020</td>
<td>40/40</td>
<td>T5</td>
<td>25 mL 0.4% ropivacaine</td>
<td>No block</td>
<td>NRS</td>
<td>1, 2</td>
</tr>
<tr>
<td>Lin W 2019</td>
<td>30/30</td>
<td>T5</td>
<td>25 mL 0.4% ropivacaine</td>
<td>Normal saline</td>
<td>VAS</td>
<td>1, 2</td>
</tr>
<tr>
<td>Ma 2017</td>
<td>20/20</td>
<td>T5</td>
<td>30 mL 0.5% ropivacaine</td>
<td>No block</td>
<td>VAS</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Shim 2020</td>
<td>24/22</td>
<td>T5</td>
<td>25 mL 0.5% ropivacaine</td>
<td>Normal saline</td>
<td>NRS</td>
<td>1, 2</td>
</tr>
<tr>
<td>Tian 2019</td>
<td>36/36</td>
<td>T5</td>
<td>20 mL 0.5% ropivacaine</td>
<td>No block</td>
<td>VAS</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Wang G 2018</td>
<td>20/20</td>
<td>T5</td>
<td>30 mL 0.375% ropivacaine</td>
<td>Normal saline</td>
<td>VAS</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Wang J 2019</td>
<td>66/66</td>
<td>T5</td>
<td>30 mL 0.5% ropivacaine</td>
<td>No block</td>
<td>VAS</td>
<td>1, 2</td>
</tr>
<tr>
<td>Wang Y 2018</td>
<td>50/50</td>
<td>T5</td>
<td>30 mL 0.5% ropivacaine</td>
<td>No block</td>
<td>VAS</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Yang 2019</td>
<td>30/30</td>
<td>T5</td>
<td>20 mL 0.375% ropivacaine</td>
<td>Normal saline</td>
<td>VAS</td>
<td>1, 2</td>
</tr>
<tr>
<td>Yao 2020</td>
<td>37/38</td>
<td>T5</td>
<td>25 mL 0.5% ropivacaine</td>
<td>Normal saline</td>
<td>NRS</td>
<td>1, 2</td>
</tr>
<tr>
<td>Zhang C 2018</td>
<td>60/60</td>
<td>T5</td>
<td>25 mL 0.5% ropivacaine</td>
<td>No block</td>
<td>VAS</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Zhang Y 2020</td>
<td>30/30</td>
<td>T5</td>
<td>20 mL 0.5% ropivacaine</td>
<td>No block</td>
<td>NRS</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Zhao 2019</td>
<td>30/30</td>
<td>T5</td>
<td>30 mL 0.5% ropivacaine</td>
<td>No block</td>
<td>VAS</td>
<td>1, 3</td>
</tr>
<tr>
<td>Zhou 2019</td>
<td>30/30</td>
<td>T4</td>
<td>15 mL 0.5% ropivacaine</td>
<td>No block</td>
<td>VAS</td>
<td>1, 3</td>
</tr>
</tbody>
</table>

1: Visual analogue scale (VAS) or Numerical rating scale (NRS); 2: Postoperative nausea and vomiting; 3: Number of patient-controlled intravenous analgesia (PCIA) pressing times.
3.1.2 Postoperative 8 hour pain scores

Among all included studies, nine studies [10, 11, 13, 14, 19, 20, 22, 23, 25] and five studies [10, 11, 13, 23, 25] reported postoperative 8 hour pain scores at rest or movement respectively. Pain scores in the ESPB group were lower than those in the control group at rest or movement. (MD = −1.07, 95% CI = −1.49, I² = 93%, P < 0.05) (Fig. 4), the differences were statistically significant.

3.1.3 Postoperative 12 hour pain scores

Among the included studies, ten studies [12, 15, 17, 18, 20, 22, 24–27] and five studies [12, 15, 25–27] reported postoperative 12 hour pain scores at rest or movement respectively. Pain scores in the ESPB group were significantly lower than those of the control group at rest or movement. (MD = −0.98, 95% CI = −1.30—−0.65, I² = 93%, P < 0.05; MD = −2.26, 95% CI = −3.03—−1.49, I² = 93%, P < 0.05) (Fig. 5), the differences were statistically significant.

3.1.4 Postoperative 24 hour pain scores

Among the included studies, seventeen studies [10–16, 18–27] and ten studies [10–13, 15, 16, 23, 25–27] reported postoperative 24 hour pain scores at rest or movement respectively. Pain scores in the ESPB group were significantly lower than those of the control group at rest or movement. (MD = −1.07, 95% CI = −1.45—−0.69, I² = 97%, P < 0.05; MD = −1.46, 95% CI = −1.87—−1.06, I² = 85%, P < 0.05) (Fig. 6), the differences were statistically significant.

3.1.5 Postoperative 48 hour pain scores

Among the included studies, twelve studies [11–13, 15, 16, 18–20, 23–26] and eight studies [11–13, 15, 16, 23, 25, 26] reported postoperative 48 hour pain scores at rest or movement respectively. Pain scores in the ESPB group were significantly lower than those of the control group at rest or movement. (MD = −0.57, 95% CI = −0.88—−0.26, I² = 93%, P < 0.05; MD = −0.44, 95% CI = −0.74—−0.13, I² = 77%, P < 0.05) (Fig. 7), the differences were statistically significant.

3.2 PONV

Sixteen studies [10–25] compared the incidence of PONV. The heterogeneity test showed: I² = 0%, P = 0.78, indicating that the heterogeneity between the studies was small. The incidence of PONV in the ESPB group was significantly lower than that in the control group (OR = 0.48, 95% CI = 0.33–0.71, I² = 0%, P < 0.05) (Fig. 8), the difference was statistically significant.

3.3 Number of PCIA pressing times

Nine studies [12, 13, 16, 18, 19, 21, 24–26] reported the number of PCIA pressing times. There was heterogeneity between studies (I² = 99%, P < 0.1), and random effects models were used to combine statistics. The results suggested that the number of PCIA pressing times in the ESPB group was significantly lower than the control group (MD = −6.83, 95% CI = −8.73—−4.94, I² = 99%, P < 0.05) (Fig. 9), the difference was statistically significant.

4. Discussion

Postoperative pain increases systematic stress responses which contributes to adverse complications [28]. Multimodal analgesia relieves postoperative pain, controls surgical stress and achieves early recovery through a combination of analgesics and/or complex regional blocks [29]. ESPB is located near the intervertebral foramen and rapidly diffuses into the paravertebral space after injection of a local anesthetic, which effectively blocks the dorsal, ventral, and communicating branches of the spinal nerves [30]. Since its introduction in 2016, ESPB has been recognized as a simple, safe, feasible and effective analgesic method in multiple clinical trials [31]. When ESPB is used for thoracotomy analgesia, the incidence of nerve injury and total spinal anesthesia is lower than epidural analgesia and thoracic paravertebral block (TPVB) [32], which has resulted in its increasing application in clinical practice.

This meta-analysis has demonstrated that: (1) GA combined with ESPB can alleviate postoperative pain comparing to GA alone; (2) the incidence of PONV with ESPB is significantly lower than that with GA alone; (3) the number of PCIA pressing times with ESPB is less than GA, resulting in less need for analgesics. There were no complications associated with ESPB puncture. These results were in accordance with previous study [33].

Several studies have showed that ESPB could achieve satisfactory analgesia results in different types of surgery. Ueshima H [34] found that ESPB could obviate the use of opioids during...
thoracic surgery, and intravenous anesthesia of opioids-free could be used for intraoperative maintenance of anesthesia, providing both intraoperative analgesia and stable hemodynamics. Chin KJ [35] indicated that bilateral ESPB used in four patients undergoing abdominal hernia repair surgery achieved good analgesia in the range of upper chest to L2 or L3, and reduced the dosage of postoperative opioids within the first 24 hours, which resulted in longer and more sustained postoperative analgesia.

Several studies have reported that ESPB may reduce postoperative complications. Huang W [33] found that ESPB resulted in equivalent analgesic efficacy to TPVB without an increased incidence of PONV and was a suitable alternative choice to TPVB. Another meta-analysis [36] found that postoperative pain scores in patients who received ESPB were lower than those in the control group at rest or at movement, regardless of whether they had thoracic or spinal and abdominal surgery. Researchers also proved that ESPB reduced PONV and provided comfortable experience with patients.

There are several limitations of our study: First, the dosage, concentration and types of local anesthetics were different, which may lead to high heterogeneity. Second, pain scores are subjective indicators and they are greatly influenced by age, race and educational levels. Third, all included studies contained different languages, and there may be differences in regional and observational indicators. Finally, due to the limitation of the blinded methods of studies included, future researches should perform more analyses which includes more studies with blinded methods to provide valuable information for clinical practice.

In conclusion, we found that the application of ESPB in thoracic surgery is a promising analgesic technique and can effectively relieve patients’ postoperative pain, decrease the incidence of PONV, and reduce the number of PCAI press times. Additional multicenter studies with a larger sample size, using blinded techniques are necessary to document the favorable effects of ESPB in thoracic surgery patients.

AUTHOR CONTRIBUTIONS
YL and HXL designed the study and collected related paper. YL and HXL drafted and revised the manuscript. YLH and HYG performed statistical analyses. YL, YLH and HYG participated in the design of the review and helped to draft and revise the manuscript. All authors read and approved the final manuscript.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE
Not applicable.

ACKNOWLEDGMENT
Thank numerous individuals participated in this study.

FUNDING
This study received no external funding.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

REFERENCES

How to cite this article: Yi Li, You-Ling Hou, Hong-Yu Guan, Hong-Xia Luo. The analgesic effect of erector spinae plane block on analgesic effect and stress response in elderly patients undergoing single hole thoracoscopic radical resection of pulmonary carcinoma. Chongqing Yixue. 2019; 48: 1213–1215. (In Chinese)