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Abstract
Objectives: To create a deep learning (DL) algorithm capable of analyzing real time
ultrasound video of the inferior vena cava (IVC) for complete collapse in pediatric
patients being evaluated for intravenous fluid (IVF) resuscitation.
Methods: Researchers employed a VGG-16 based DL architecture, running inside
a Long Short Term Memory algorithm design, to analyze prospectively obtained
ultrasound video from pediatric patients presenting with dehydration to a busy urban
ED, obtained for a prior clinical study. All videos were de-identified and no patient
information was available. A total of 184 patient IVC ultrasound videos were used in the
study. All videos were previously reviewed and graded by two blinded POCUS experts
(PedEM resident and PedEM attending with 20 years experience) and split into two
categories, those showing complete (95 patients) and those with incomplete (89 patients)
IVC collapse. Approximately 10% (9) patient videos were randomly removed from each
original data groups to be used for algorithm testing after training was completed. A
standard 80%/20% training and validation split was used on the remaining 166 patient
videos for algorithm training. Training accuracy, losses and learning curves were tracked
and various training parameters such as learning rates and batch sizes were optimized
throughout training. As a final real world test, the DL algorithm was tasked with
analyzing the 18 previously unseen, randomly selected IVC videos. Cohen’s kappa was
calculated for each of the blinded POCUS reviewers and DL algorithm.
Results: This DL algorithm completed analysis of each previously unseen real world test
video and is the first such algorithm to analyze IVC collapse through visual estimation
in real-time. The algorithm was able to deliver a collapse result prediction for all 18
test IVC videos and there were no failures. Algorithm agreement with PedEM POCUS
attending was substantial with a Cohen’s kappa of 0.78 (95% CI 0.49 to 1.0). Algorithm
agreement with PedEM resident was substantial with Cohen’s kappa of 0.66 (95%
CI 0.31 to 1.0). The PEM resident and PEM POCUS attending also had substantial
agreement, yielding a Cohen’s kappa of 0.66 (95% CI 0.32 to 1.0).
Conclusions: This DL algorithm developed on prospectively acquired IVC video data
from patients being studied for an IVF resuscitation study proved accurate at identifying
when the IVC collapsed completely in real time. There was substantial agreement
with POCUS reviewers of the same videos. Such an algorithm could allow novice
clinicians to rapidly identify complete IVC collapse in children and the need for IVF
administration. This could expand patient access to point of care technology by enabling
novices with little training to use the diagnostic tool at bedside and decide if patients
require intravenous fluid administration.
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1. Introduction

Volume depletion secondary to various underlying causes is
a frequent scenario in pediatric emergency patients [1]. In
fact, worldwide, diarrhea claims tens of thousands of chil-
dren’s lives through dehydration [2]. However, determining
whether a child has significant enough volume depletion to
warrant intravenous fluid resuscitation or will simply recover
with oral hydration can be surprisingly challenging for many
providers [3]. Placing an intravenous line into a child can
be difficult and traumatic for patient and parent alike, thus
making unnecessarily placed lines even more significant in
cases where oral hydration was safe to pursue and likely to
work [4]. Signs which may point to volume depletion in adults
can be absent in children until they are critically ill [5]. Scores
and decision rules, designed to differentiate if young children
are significantly dehydrated or not, are not uniformly used and
have questionable clinical utility [6].
Ideally, all pediatric patients at risk for significant volume

depletion could be noninvasively screened and the degree of
hypovolemia identified or at least the need for intravenous
fluids ruled out. Point-of-care ultrasound (POCUS) offers such
a tool and the most common POCUS approach is interrogation
of the inferior vena cava (IVC). Evaluation of the IVC has
been shown to be a reliable indicator of volume status and
results in good interrater reliability [7]. The largest body of
IVC and volume status or fluid responsiveness literature has
come from adult patients. In adults, measuring collapsibility of
the inferior vena cava (cIVC) has been shown to predict fluid
responsiveness fairly well, when performed in non-ventilated
patients by expert sonologists (AUROC = 0.82) [8]. However,
work by another group of authors raised concerns that the
test characteristics were not so favorable when novice sonol-
ogists performed the POCUS examination (AUROC = 0.69)
[9]. Other researchers have also reported, poor to moderate
interrater agreement in cIVC measurement among non-expert
sonologists [10–12]. Training clinicians with no ultrasound
experience, to a level at which they attain competence with
POCUS use and accurately measure cIVC to guide IV fluid
resuscitation, is emerging as the most significant hurdle to
broad adoption of this approach.
Prior work suggests that euvolemic children will not have

complete IVC collapse on inspiration, thus on ultrasound the
anterior and posterior walls never touch in a sagittal plane
throughout the proximal IVC [13]. Such patients can be
treated without intravenous fluid infusion and be discharged
home. However, significant collapse is more frequently seen in
children with dehydration. One practical limitation to POCUS
evaluation of the IVC is the skill required to not only obtain
the correct image but then rapidly interpret IVC behavior
in real time at the patient’s bedside. This may be made
more difficult in a busy environment or with a sick, poorly
cooperative child. Published studies have shown that a good
cutoff point for determining if a child requires intravenous fluid
administration is the presence of complete IVC collapse on
ultrasound —suggesting IVF is required [13]. While, on the
surface, appearing simple by description, the procedure can be
difficult for novice ultrasound users. A tool to automatically
identify when the IVC collapses completely could prove useful

in broader clinical practice. Adapting deep learning (DL) as a
solution to overcome the lack of adequate training, thereby en-
abling widespread use of POCUS targeted resuscitation more
feasible, has been proposed [14].
In this study, researchers explored the development of a

Deep Learning (DL)/Artificial Intelligence (AI) algorithm
which would identify occurrence of complete IVC collapse.
Accurate and rapid identification of either the presence or
lack of complete IVC collapse would allow novice users to
identify children likely to be go home without bounce back for
dehydration. A DL algorithm was created using ultrasound
videos of the IVC in pediatric patients being evaluated for
volume status, to identify those with complete IVC collapse
among spontaneously breathing patients. Researchers then
compared the performance of the DL algorithm against 2
POCUS experts on new (not previously part of the DL training
dataset) IVC videos.

2. Methods

2.1 Study design
Researchers used de-identified ultrasound video data from a
prior prospective observational study of patients ranging up
to 21 years of age, who presented to the ED [15]. Videos
of IVC scans were obtained for patients with a history of
diarrhea with suspected dehydration and or a history of emesis
being treated with ondanseton. Patients who were unstable
were not included in this dataset. Patient were scanned after
being triaged, but prior to fluid resuscitation or rehydration.
Researchers performed an IVC ultrasound examination which
included obtaining and recording a sagittal view of the prox-
imal IVC during several respiratory cycles. This study was
approved by the Icahn School of Medicine at Mount Sinai
institutional review board, reference number 15-1599.
Providers used a Sonosite M-Turbo ultrasound system with

a phased array transducer (P21 -5 to 1 MHz). The researchers
used a cardiac preset for imaging the IVC and saved 6 second
retrospective cine loops, Fig. 1. Complete IVC collapse was
defined as opposing walls of the IVC coming into contact
with each other at any point, Fig. 2. A total of 5 researchers
enrolled patients and scanned IVCs, 4 pediatric emergency
medicine (PEM) attendings and 1 PEM resident. The re-
searchers scanned with the transducer in the subxiphoid loca-
tion using the liver as an acoustic window. A sagittal plane
over the mid proximal IVC was attained, visualizing the IVC
entry into the right atrium, Fig. 1. Researchers focused their
attention just caudal to the junction of the hepatic veins with
the IVC.

2.2 Study data
A total of 166 individual patient videos of the IVC were
available for algorithm training. A standard 80%/20% training
and validation split was applied to the 166 patient videos for
algorithm training. Video data was in MP4 format. Each video
was reviewed by two PEMPOCUSproviders and rated as com-
pletely collapsing or not. Complete collapse was defined as the
anterior and posterior walls of the proximal IVC touching at
any point during inspiration. An additional new 18 videos, data
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FIGURE 1. Shows sagittal proximal IVC (inferior vena
cava) segment appearance on ultrasound at maximum
expiration in one of the study patients.

not seen previously by the algorithm and not from the same
training set, were used for algorithm testing as real world data,
Fig. 3.

2.3 Algorithm design
Researchers used the Anaconda package manager with Python
programming language version 3.72, to manage packages and
facilitate scripting. Based on prior experience, a decision was
made to utilize a publicly available Keras-based (a python
deep learning library or framework) VGG-16 bidirectional
LSTM DL algorithm. The VGG-16 model can be accessed
from several public sources, including github.com (an online
scripting repository). An early version of a convolutional
neural network (CNN), VGG-16 uses 16 layers and has been
shown to be superior for ultrasound DL applications when
compared to modern and more complex CNNs [9]. The LSTM
architecture allows analysis of individual ultrasound frames
by the VGG-16 CNN, while it tracks temporal changes and
relationships in real-time video to create an algorithm for
ultrasound video analysis, Fig. 4. An LSTM such as this
one has additional layers in the network algorithm architecture
which tracks temporal changes between images (changes in the
ultrasound image in a cine loop such as a beating heart). In
contrast to standard LSTM networks, which are unidirectional,
the bidirectional aspect allows temporal related information
to flow in both forward and reverse directions through the
algorithm. This feature makes the architecture more sensitive
and specific for detecting any changes from frame to frame
within a video, thereby better identifying action. It further
improves a network’s understanding of the context the motion
occurs in. Investigators used weights trained on the UCF-101
Action Recognition Data Set (University of Central Florida)
for the VGG-16 bidirectional LSTM. Weights are learnable
parameters in neural networks and account for a CNN’s ability
to interpret images.
This appears to be the first instance of LSTM DL architec-

ture being applied to pediatric IVCmeasurement. Themajority
of prior LSTM work has focused on ECG and EEG analysis as
well as computed tomography image analysis [16–18]. These

imaging types pose different challenges to analysis than due
to limited number of frames requiring analysis and change
occurring over a short period of time. Assessing pediatric IVC
behavior in acute settings results in considerable movement
due to rapid breathing, heart rate and in younger patients poor
cooperation. LSTM has been previously applied to adult IVC
assessment using similar technique, but adults have differing
physiology and larger anatomic size than children [19, 20].
LSTM architecture has been used for needle tip analysis and
possible ultrasound guidance but only on non-human tissue
in a laboratory setting [21]. The closest other LSTM work
with ultrasound targeted lung ultrasound analysis in adults
but utilized a mono-directional LSTM network with DenseNet
201 embedded in the architecture. However, the VGG 16
utilized in the current approach may be more efficacious when
analyzing ultrasound images [15, 22].
The bidirectional LSTMalgorithmwas trained by incremen-

tally manipulating learning rates, optimizers, batch size and
learning rates (which are all adjustable settings which affect
the performance of a CNNs during training) during training
for optimal accuracies and training times. Simultaneously
researchers worked to avoid exploding gradients (dramatic
changes in learning parameters of the CNN during training)
which can result in training failure. The total epochs used,
defined as one round of training through all of the data, was ad-
justed as needed to optimize results while avoiding overfitting.
Analyzing 90 frame runs proved to be the most efficacious
approach.

2.4 Algorithm validation and testing
The bidirectional LSTM algorithm was written to perform
cross validation during each epoch automatically. Learning
losses, training losses and cross-validation accuracy, were used
to guide algorithm training adjustments. Best performance
was obtained when training for 63 epochs (epoch = single
training pass through all of the data), using a Stochastic gra-
dient decent optimizer a learning rate of 0.001 and batch size
of 10 videos. After results were optimized and no further
adjustments improved performance, the algorithm was tested
on the 18 completely new, prospectively obtained videos from
different patients. A testing script used the newly generated
training weights on the 18 new patient IVC ultrasound videos
through the VGG-16 bidirectional LSTM to predict IVC col-
lapse. This step tested the algorithms’ performance in real
life by applying it to newly, prospectively obtained data, not
previously used to train the DL algorithm. Researchers then
compared these results to 2 POCUS experts who reviewed
the same videos. The expert physician sonologists were an
attending PEM attending physician and a PEM resident at the
end of their fellowship with extensive ultrasound experience,
both had performed over 250 IVC ultrasound examinations.

2.5 Statistical analysis
Cohen’s kappa (κ) with 95% confidence intervals (CIs) was
calculated between the 2-blinded reviewers, and between the
reviewers and the DL algorithm. Statistical analyses were
performed using IBM SPSS Statistics 25 (IBM, Armonk, NY,
USA).
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FIGURE 2. Shows a patient whose IVC collapses completely upon inspiration from left to right. Complete IVC collapse
was defined as opposing walls of the IVC coming into contact with each other at any point.

FIGURE 3. The study process flow in graphical form.

3. Results

3.1 Outcomes

Table 1 provides reviewers’ interpretation of collapse and
DL algorithm’s prediction of collapse completeness for all 18
videos. The DL algorithm and both reviewers were able to
complete review and categorization of each test video. The
POCUS reviewers felt all videos were adequate for collapse
assessment. None of the patients who had partial IVC collapse
required IVF resuscitation or admission solely for dehydration.

All patients with incomplete IVC collapse (Fig. 5) were able
to be discharged from the ED and did not return to the same
medical system, based on chart review. This DL algorithm
was able to complete analysis of each previously unseen real
world test video. Algorithm agreement with the PEM POCUS
attending was substantial with a Cohen’s kappa of 0.78 (95%
CI 0.49 to 1.0). Algorithm agreement with PEM resident
was substantial with Cohen’s kappa of 0.66 (95% CI 0.31 to
1.0). The PEM resident and PEM POCUS attending also had
substantial agreement, yielding a Cohen’s kappa of 0.67 (95%
CI 0.32 to 1.0).
The DL algorithm disagreed with the PEM POCUS at-

tending in two patients. Both disagreements resulted from
a prediction by the DL algorithm of complete IVC collapse,
while the PEM POCUS attending felt the IVC did not collapse
completely. The DL algorithm and PEM resident disagreed
in three instances with the algorithm predicting complete IVC
collapse twice while the resident rated the IVC as not col-
lapsing completely. In the third disagreement the DL algo-
rithm predicted incomplete collapse while the resident judged
the IVC to collapse completely. In two out of the three
disagreements between the DL algorithm and resident, the
POCUS attending agreed with the algorithm. A review of the
videos which caused disagreement did not reveal significant
challenges with image artifact or shadowing involving the IVC
when compared to the remaining test videos.

4. Discussion

In this study, researchers developed a novel AI algorithm for
IVC ultrasound interpretation in pediatric emergency patients
being evaluated for dehydration. Considerable prior work has
appeared in the medical literature including comparison of the
IVC diameter in maximum and minimum and its relationship
with the aorta diameter [23]. This approach is quite laborious,
requiring measurement of the aorta and IVC maximum and
minimumdiameters to establish IVC collapsibility and is rarely
used in clinical practice, making it essentially obsolete [13].
However, even the process of IVC measurement for maximum
and minimum diameters, to establish IVC collapsibility, takes
time and requires additional ultrasound experience that some
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FIGURE 4. Shows the LSTM architecture developed and employed in the study.

TABLE 1. Comparison table of Deep Learning algorithm, PEM resident and PEM POCUS attending assessment of
IVC collapse.

DL algorithm prediction PEM resident PEM POCUS attending
Incomplete collapse Complete collapse Incomplete collapse
Complete collapse Complete collapse Complete collapse
Incomplete collapse Incomplete collapse Incomplete collapse
Complete collapse Complete collapse Complete collapse
Incomplete collapse Incomplete collapse Incomplete collapse
Complete collapse Complete collapse Complete collapse
Incomplete collapse Incomplete collapse Incomplete collapse
Complete collapse Complete collapse Complete collapse
Complete collapse Complete collapse Complete collapse
Incomplete collapse Incomplete collapse Incomplete collapse
Complete collapse Incomplete collapse Incomplete collapse
Incomplete collapse Incomplete collapse Incomplete collapse
Complete collapse Incomplete collapse Complete collapse
Complete collapse Complete collapse Complete collapse
Complete collapse Complete collapse Complete collapse
Complete collapse Complete collapse Complete collapse
Incomplete collapse Incomplete collapse Incomplete collapse
Complete collapse Complete collapse Incomplete collapse

novices may not possess [24]. Prior work has also established
that operators are able to visually categorize the degree of
IVC collapse into discrete categories showing substantial in-

terobserver agreement [25]. Additionally, investigators have
previously shown that IVC collapse duration, when assessed
by blinded reviewers, correlated well with PO versus IV re-
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FIGURE 5. Shows a patient whose IVC collapsed
incompletely upon inspiration.

hydration in pediatric patients [13]. Further, results indicated
that lack of IVC collapsibility correlated with successful PO
rehydration and discharge from the ED without patient bounce
back [13].
Recently, attention has been focused on the potential utility

of AI in POCUS applications and the promise for decreased
cognitive burden in obtaining focused findings from ultrasound
examinations by novices. More complex applications have
also been explored and some are available for advanced ultra-
sound imaging to improve workflow and decrease examination
times [26]. Creating a DL application which would allow
clinicians with less ultrasound training to employ focused
ultrasound in an equivalent way to POCUS experts would
greatly increase patient access to a useful, non-invasive, bed-
side diagnostic and monitoring tool. While expert POCUS
users are be able to quickly estimate degree of IVC collapse
in a child on ultrasound, novices and less trained POCUS
users may struggle to simply obtain and keep a mid-sagittal
view of the proximal IVC. An algorithm which automatically
“visually” interprets the degree of IVC collapse, without the
novice operator having to take more steps, is directly in line
with the promise of AI impact in clinical practice, especially
imaging interpretation.
Most prior work with IVC assessment automation in ul-

trasound focused on animal models, created complex offline
interpretation approaches with multiple steps required or com-
pared AI results with carefully obtained measurements by
ultrasound technologists [27]. Chen et al. [27], attempted to
automate IVC collapse analysis and constructed a DL algo-
rithm capable of identifying and measuring the IVC diameter
in a porcine model. The DL algorithm was trained on 48 data
sets of IVC images which included both dynamic and static
images. Investigators then compared the DL algorithms IVC
diameter measurements to those of expert sonographers. The
researchers reported the algorithm successfully identified the
IVC 98% of the time and most IVC diameter measurements
made were within 15% of an expert sonologist’s read. How-
ever, the researchers utilized a stepwise process that included
significant captured video clip pre-processing, filters and im-
age size modifications. Additionally, investigators relied on
Color Doppler use to identify areas of interest based on blood
flow presence alone, a technique typically unneeded in POCUS
practice. Although promising, the multiple cumbersome steps

in the described approach is not suitable for actual clinical
situations. Amore promising study was published by, Belmont
et al. and used Kana-de-Lucas-Tomasi (KTL) feature tracking
and pyramidal segmentation to build an artificial intelligence
algorithm which was capable of identifying and measuring
cIVC [28]. The somewhat complex algorithm analyzed 57
cine loops from 47 non-ventilated dialysis patients and showed
good agreement with POCUS expert manual measurements.
More than 95% of the DL measurements were within <10%
compared to expert reads). Still, the algorithm’s clinical ap-
plication would likely face challenges in this format due to
a requirement for clear and consistent IVC edge depiction in
order to enable tracking. A requirement which can be difficult
to maintain in the clinical setting.
A more practical approach is required, one that would focus

on bedside application and tailored to enabling rapid interpre-
tation in real time when used by ultrasound novices. Despite
mental imagery conjured up by the term Deep Learning, if
properly structured, DL can be implemented as a simple to
use application and obviate the need for multiple offline steps.
Deep Learning is the cornerstone of medical imaging analysis
with artificial intelligence. The vast majority of work, both
research and commercial, has focused on high dollar imaging
modalities such as MRI and CT [29]. Plane x-rays have also
generated considerable work, but ultrasound in general, lags
far behind. Even less attention has been focused on POCUS
related applications.
While seemingly magical in its capability to the uninitiated,

DL is simply a massive amount of computations performed
on ever larger portions of an image and correlating predic-
tion outcomes with ground truth results, which indicate if
the image is a cat or dog or in the case of medical images,
gallbladder or heart, among others. Currently, there are at least
two commercial products available, on ultrasound machines
marketed in the USA, which have automatic IVC evaluation
delivering a collapsibility index [20]. One of these uses a
Deep Learning algorithm, which the other one is older and hard
coded. Unfortunately, these algorithms are available on a small
number of the ultrasound machines sold to POCUS providers
and will not work with other ultrasound machine types, if
they were transferable. Both of these automatic software
applications depend on identifying the IVC and then tasking
the software with marking IVC borders and then creating
measurements from these, using M-mode tracings, followed
by simple calculations. Calculation for both depends on excel-
lent image quality, which may be very challenging in some
clinical settings and is less likely to occur when ultrasound
examinations are being performed by novices. The algorithm
employed in this study uses a different property of Deep
Learning networks, one that is similar to what experts do
when they “eye-ball” an ultrasound assessment such as ejection
fraction for the left ventricle. This is often referred to as
the regression approach to DL algorithm function. Thus, the
highest quality images with clear edges are not important for
function to the same degree as current commercial versions of
auto IVC evaluation tools. Additionally, the algorithm allows
novices to focus on locating the proximal IVC and holding the
transducer aligned over it. Researchers were able to achieve
these results through a combination of a previously studied
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optimized CNN choice for ultrasound analysis and a fine tuned
Bidirectional LSTM architecture which allowed for analysis of
actual 6 second video clips of the IVC, the same as those used
in clinical patient management. Therefore, this is the closest
step to actually implementing and testing such an approach in
an actual clinical setting.

The clinical impact of a DL algorithm that visually esti-
mates IVC collapse is potentially significant. With fewer
computational steps required there is increased efficiency and
the possibility for a DL algorithm to run on simpler and
smaller computer chips. For instance, a common approach
for an algorithm such as this would be to take a live video
feed from the ultrasound device and have the DL application
running on a separate laptop or tablet in real time to assess the
degree of IVC collapse. This approach implies that individual
medical centers could design their own algorithms, tailored
to the ultrasound devices available in their department and
even fine-tuned to their patient population, which can change
around the world. When a child presents to an emergency
department, regardless of where in the world it is located, a
novice ultrasound provider, nurse or tech, can assess volume
status easily as long as they can obtain a view of the proximal
IVC.

This study has multiple limitations. First the training sample
size is considered quite small for DL algorithm design. A
much larger dataset, one that is over 1000 individual patients
would make for a more robust algorithm. Second, the test
dataset used, (n = 18 patients) is also relatively small, but
importantly allowed for a prospective, real life evaluation of
algorithm performance, something typically absent in AI and
imaging studies [30]. Implementing an executable application
version of this algorithm was not performed by us, due to
funding limitations and IRB permission, but is rudimentary
and could be accomplished with a separate laptop that would
take a video feed from an ultrasound device and in real time
analyze and overlay results onto the ultrasound image. This
application has not yet been tested in daily ED practice with
various providers, a step for another future study, ideally once
funding was available.

5. Conclusions

Researchers demonstrated that an DL algorithm trained on
a small number of patient ultrasound cine loops can have
substantial agreement with two blinded expert POCUS review-
ers in judging complete versus incomplete IVC collapse in
pediatric patient. Lack of complete IVC collapse is inversely
correlated with the need for admission and IV fluid hydration,
making this a useful practical tool in volume status assessment.
Further, these results suggest that DL visual estimation of
IVC collapse can be accurate and could be implemented by
just one emergency department for their own use, even when
commercial products are unavailable or unaffordable. This
could expand patient access to point of care technology by
enabling novices with little training to use the diagnostic tool
at bedside.
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