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Abstract
Background: The SARS-CoV-2 virus has demonstrated the weakness of many health
systems worldwide, creating a saturation and lack of access to treatments. A bottleneck
to fight this pandemic relates to the lack of diagnostic infrastructure for early detection
of positive cases, particularly in rural and impoverished areas of developing countries.
In this context, less costly and fast machine learning (ML) diagnosis-based systems are
helpful. However, most of the research has focused on deep-learning techniques for
diagnosis, which are computationally and technologically expensive. ML models have
been mainly used as a benchmark and are not entirely explored in the existing literature
on the topic of this paper.
Objective: To analyze the capabilities of ML techniques (compared to deep learning) to
diagnose COVID-19 cases based on X-ray images, assessing the performance of these
techniques and using their predictive power for such a diagnosis.
Methods: A factorial experiment was designed to establish this power with X-ray chest
images of healthy, pneumonia, and COVID-19 infected patients. This design considers
data-balancing methods, feature extraction approaches, different algorithms, and hyper-
parameter optimization. The ML techniques were evaluated based on classification
metrics, including accuracy, the area under the receiver operating characteristic curve
(AUROC), F1-score, sensitivity, and specificity.
Results: The design of experiment provided the mean and its confidence intervals for the
predictive capability of different ML techniques, which reached AUROC values as high
as 90% with suitable sensitivity and specificity. Among the learning algorithms, support
vector machines and random forest performed best. The down-sampling method for
unbalanced data improved the predictive power significantly for the images used in this
study.
Conclusions: Our investigation demonstrated that ML techniques are able to identify
COVID-19 infected patients. The results provided suitable values of sensitivity and
specificity, minimizing the false-positive or false-negative rates. The models were
trained with significantly low computational resources, which helps to provide access
and deployment in rural and impoverished areas.
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1. Introduction

The Coronavirus (COVID-19) disease is caused by a novel
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) and first began in the Wuhan City, Hubei Province, China,
early in December 2019 [1, 2]. Although COVID-19 is a new
virus, knowledge on this disease is daily generated. Several
authors [1, 3] described SARS-CoV-2 as a type β-coronavirus
cluster. COVID-19 has been defined as the third known
zoonotic coronavirus, following the SARS and the Middle

East respiratory syndrome (MERS) [3–5]. The COVID-19
affects the human’s lower respiratory tract, and it is often
manifested as pneumonia [4]. Typical symptoms for COVID-
19 positive patients include cough, fatigue, and fever, but other
symptoms as diarrhea, digestive problems, dyspnoea, hemop-
tysis, headache, lymphopenia, and sand sputum production
have been also identified [6–10]. Studies have shown that
such symptoms likely appear after an incubation period of
approximately 5.2 days [9, 11]. In contrast, the average time
to death after symptoms appearance ranges from 6 to 41 days
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with a mean of 14 days [9, 10].
The mentioned symptoms are common to other respiratory

syndromes. Hence, detection and confirmation of a patient
having a COVID-19 viral infection are performed using poly-
merase chain reaction (PCR) tests, which, to date, remains the
standard gold examination [12]. However, there are several
considerations and limitations to this type of diagnostic test.
For instance, authors have reported that: (i) there are more than
seven different SARS-CoV-2 nucleic acid PCR tests [13, 14];
(ii) when considering the viral load in samples, it has been
shown that upper respiratory tract samples have their peak
viral loads three days after symptom onset [15]; and (iii) as
the SARS-CoV-2 epidemic evolves globally, we need better
diagnostic tests that are rapid, reliable, validated and widely
available. Other authors further elaborated on the accessibility
to tests [16], including that the supply of the reagents does not
satisfy the demand. Also, the results of PCR tests take one day
or longer to be obtained after sampling (in contexts that are not
overcrowded and saturated by infected people). Considering
such limitations, some investigations have called for an initial
screening with an auxiliary examination based on computed
tomography (CT) or chest X-rays [12–14, 16–19]. Typical
chest manifestations of COVID-19 diagnosed patients include
consolidation, crazy paving pattern, ground-glass opacities,
and reticular pattern, which are typical CT manifestations [19–
21].
Artificial intelligence techniques have been proposed for

screening, tracking, and predicting patient health outcomes
and for developing drugs and vaccines through clinical trials
[22, 23]. However, most of the research has been focused on
the early detection and diagnosis of COVID-19 patients using
deep learning (DL) techniques [18, 24–27].
Table 1 (Ref. [18, 24–26, 28–30]) presents a summary of

some recent approaches used for COVID-19 diagnosis with
medical images and techniques. Convolutional neural net-
works (CNN) have been used in recent literature on the topic.
For instance, CNN models utilizing CT images of COVID-19,
pneumonia, and healthy patients were considered in [26]. Sim-
ilar work was conducted in [18, 24]. More recently, authors
have derived hybrid techniques based on DL (CNN features)
and support vector machines (SVM) algorithms, named convo-
lutional support vector machines (CSVM) [28]. Also, COVID-
19 patients using X-ray images were predicted employing
CSVM [31]. These authors identified that CSVM with a
polynomial kernel provided the best result.
Similarly, CSVM models with additional feature ranking

techniques improved the classification performance for
COVID-19 [25]. As a different approach, a high accuracy
in predicting COVID19 could be reached by using
transfer learning [27]. Combining architectures such as
dense convolutional network (DenseNet), residual neural
network (ResNet), and very deep CNN for large-scale
image recognition (VGG), a high-performance model was
proposed in [27], which reached an accuracy level of 97.1%.
Deep features from 13 different CNN models with SVM
as the classification technique were used in [29]. These
features differ from previously mentioned works as they
are implemented in two steps: first decomposing images
using CNN and then classifying data with SVM. The hybrid

ResNet50 CNN and SVM model provided the best results
based on accuracy, the area under the receiver operating
characteristic curve (AUROC), F1-score, false-positive rate
(FPR), false-negative rate (FNR), and sensitivity. It is also
common to find other machine learning (ML) techniques
without deep features [32]. These ML techniques are
employed as a benchmark for more complex models, but their
predictive power is not usually assessed due to their use as a
benchmark and not as a classifier itself.
The studies mentioned above demonstrate that DL (and

CNN) is (are) highly effective for discriminating COVID-19
images. Nevertheless, SVM has been used as an alternative
to a DL-based classifier, as CNN needs large data sets for
training, validating, and reducing the overfitting [29]. There
are still other drawbacks to be addressed when CNN-based
models are considered. Firstly, CNN models heavily rely
on high-performance computing, where complex models can
take several hours to days to be trained, developed, analyzed,
and implemented in a clinical context [33]. This is a critical
issue in rural and impoverished areas that lack access to a
proper technological infrastructure [34]. Secondly, commonly
used algorithms and network architectures are complex to
design and explain, which contrasts with desired biomedical
and health contexts [35]. These drawbacks take significant
importance in the current context of a pandemic. Notably,
in the present world situation, a rapid response is needed
in communities where the health systems are saturated, and
access to PCR tests (or other tests, such as rapid tests) is
limited [14–16]. Furthermore, it is commonly found in the
literature that impoverished, rural, and small communities
lack infrastructure access [34]. Significant socioeconomic
differences and disparities have been found in the context of the
COVID-19 pandemic [36–39]. Therefore, in such a context,
simple, fast, and cheap tools, such as those provided by ML
techniques, can be of great value.
The objective of this paper is to explore the capabilities

of ML techniques, in comparison to DL, as valuable tools
to diagnose coronavirus positive cases based on X-ray chest
images, providing an accessible, affordable, and fast solution
to the initial screening of COVID-19 patients. Note that
our investigation takes a different approach to what has been
studied in the literature. We develop a full factorial experi-
ment to train a series of ML-based techniques, such as artifi-
cial neural networks (ANN), random forest (RF), and SVM.
The design of experiment considers different data-balancing
methods, cross-validation approaches, kernel functions, and
hyper-parameter optimizations. For each technique studied
here, the statistical experiment allows us to obtain predictive
power metrics such as accuracy, sensitivity, and specificity.
This experiment is crucial for re-sampling and data-balancing
methods to accurately account for data unbalancing associated
with low COVID-19 positive rates of detection.
Methods to handle unbalanced data can be classified into

internal or external. On an internal level, one may tune
the existing design to address the class imbalances, being its
advantage that this level is specific to an algorithm. On the
external level, different types of data sampling methods are
used. The external approach is straightforward and can be
applied to any algorithm, but it incurs overfitting or loss of
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TABLE 1. Performance of the best models presented in the literature review.
Performance metric

ML technique Image
type

COVID-19
cases

Other cases Sensitivity Specificity Accuracy Others

CNN [18] X-ray 231
1493 (pneumonia)

92.11% 96.06% 92.18% F1-score = 92.07%
1583 (healthy)

CNN [24] CT 1296
1735 (CAP*)

90% 96% 96% N/A
1325 (non-pneumonia)

CSVM [25] CT 53 247 (healthy) 98.93% 97.60% 98.27% F1-score = 98.28%

CSVM [28] CT 1262 1262 (non-COVID-19) 96.09% 94.10% 94.03%
F1-score = 88.15%

Kappa = 88.07%

AUROC = 0.9866

SVM using shrunken
features [30]

CT and
X-ray

101 159 (non-COVID-19) 91.88% 98.54% 94.23% F1-score = 93.99%

Deep features and
X-ray 127

127 (pneumonia)
95.33% FPR = 2.33% 95.33% F1-score = 95.34%

SVM classifier [29] 127 (healthy)

CNN [26] CT 752
797 (pneumonia)

94.93% 91.13% 92.49% AUROC = 0.9797
679 (regular control patients)

*where CAP: community-acquired pneumonia.

information [32, 40].
Unlike the existing literature, we use a design of experi-

ment to estimate the classification power of ML techniques,
which are often not fully optimized and explored by previous
research. We demonstrate that the ML techniques can provide
stable predictionswith low and suitable FPR and FNR. TheML
techniques that utilize few resources can be used as COVID-19
diagnostic tools in contexts where access to health infrastruc-
ture is lacking, such as in impoverished and rural regions or
communities.
The rest of the paper is organized as follows. Section 2

presents the methods used in this research as well as details
of the data employed for training and testing the proposed
ML models. Section 3 reports the results from the design of
experiment, while Section 4 concludes and discusses the main
findings of our research.

2. Methods

This section describes the process followed to create a usable
data set based on the analysis of CT images. Then, we provide
the details (training, testing, and tuning) of the ML techniques
used.

2.1 Data set: X-ray image source and
database creation
The data set used for training models was created from a series
of steps, including data (image) pre-processing, object detec-
tion, and feature extraction [41, 42]. Fig. 1 depicts the overall

process followed in this study. The image pre-processing
step considers cutting, resizing, and formatting X-ray images.
Object detection is focused on making a demarcation of the
areas in the image where the objects of interest for the analysis
are located. The extraction of characteristics considers two
main features. First, we obtain textured X-ray images, which
quantify the distribution of the intensities of the pixels within
each object based on their average and standard deviation
(SD). Among the most advanced texture feature extraction
techniques, we consider pixel-pixel co-occurrence patterns
[43] and granularity measures at different scales [44, 45]. The
second class of features describes the X-ray image contour
based on segmentation masks: the roughness or circularity of
the contour [46]. More specifically, we create features that
quantify the shape of the object, its image moments (which
can be computed with or without reference intensities), and
features that quantify the texture of the pixels. Then, the final
data set considers the response variable (COVID-19 positive,
healthy, or other pneumonia patients), 95 other covariates from
X-ray image characteristics created from the feature extrac-
tion process, and patient’s data (age and sex). The feature
extraction process was developed with the EBImage package
of the R software [47, 48]. The X-ray images were obtained
from public repositories of COVID-19 (based on assembling
of medical images in existing publications) and from the public
chest X-ray database [49, 50].

As a result of the analysis of images, and a merge of these
data with patient’s characteristics, the data set finally contains:
(i) three types of views related to posterior-anterior (PA),
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FIGURE 1. Overall data set and model building process.

anterior-posterior (AP), and left (L) parts; (ii) sex, age, and
diagnosis (COVID-19, healthy, pneumonia, SARS, strepto-
coccus, and others) of patients; and (iii) metrics of the images.

2.2 Machine learning techniques: training
and testing
Different ML techniques were used for classification in this
study, including ANN, RF, and SVM. A CNN was also used
as a benchmark for comparison with ML techniques. All
models were trained to predict patients with positive COVID-
19 against healthy patients or with pneumonia. Performance
evaluation metrics were used to assess the capability of ML
techniques for classification. The mean and its confidence
interval for the metrics were obtained using a k-fold-repeated-
cross-validation (KFRCV) with five and ten as the number of
folds, separately, and with ten repeats each. The data cleaning,
training, and testing processes are depicted in Fig. 2. We use
the R software and its libraries caret (for creating models),
tidyverse (for data managing), e1071 (for calculating metrics),
and pROC (for creating curves).
As shown in Fig. 2, we apply data-balancing after the data

cleaning step (filtering and pre-processing). This balancing in-
cludes down-sampling, up-sampling, synthetic minority over-
sampling technique (SMOTE) [51], and Rose. Note that, for
the down-sampling method, we also use an external sampling
approach to account for the reduced number of data points
of the positive class (COVID-19). For each of the data-
balancing methods, we perform a re-sampling algorithm based
on KFRCV. Each model is trained with both five and ten folds.
Additionally, the k-fold cross-validation approach is repeated
ten times to estimate mean values and their confidence in-
tervals for obtaining performance metrics accuracy, AUROC,
sensitivity, and specificity. The training process is performed
for different types of ANN, RF with varying numbers of trees,
and SVMwith different kernel functions. We perform a hyper-
parameter optimization during re-sampling (tuning length =
15). We calculate the confusion matrix for each of the models
to determine accuracy, AUROC, sensitivity, and specificity
values. The details about each ML technique and its hyper-
parameter optimization are discussed next.
ML hyper-parameters were tuned using grid and random

search. RF models were created using different numbers of

trees (100, 300, 500, 1500, and 2000). For tuning parameters,
the number of variables available for splitting varied randomly,
at each tree node, ten times. For SVM, linear, polynomial,
and radial kernel functions were compared. For SVM tuning
parameters, different costs (for each kernel), sigma (for radial),
degree, and scale (for polynomial) were implemented. These
parameters change 15 times randomly. Table 2 presents the
range and selection of the values of parameters in SVM and
RF for better understanding. ANN models with both multi-
layer and multi-decay search were developed. For tuning
parameters, different numbers of layers, neurons, and decay
were also considered. These numbers change throughout a grid
search where, for multilayer, the number of layers (first layer)
goes from 1 to 3, and the number of neurons from 1 to 10.
For subsequent layers, we considered 0 to 10 for the number
of neurons. For ANN with multi-decay search, we assumed
one layer with neurons ranging from 1 to 10. We also used a
grid search for the decay parameter of the ANN. In multi-layer
ANN, decay takes five random numbers in the range 10−10

to 10. For the multi-decay ANN, 30 numbers were randomly
chosen from the same range.
The CNN was built based on conventional structures, in-

cluding input, three convolution layers (16, 32, and 64 filters
with 3 × 3 pixels), max-pooling (2 × 2 pixels), and ending
with a fully connected layer. A rectified linear unit was con-
sidered as the activation function, used after each convolution
layer and for the fully connected layer. The hyper-parameters
selection considered different configurations that were tested
in models of varying complexity. The model configuration
that presented the best performance in terms of the loss and
accuracy functions was chosen. The model was implemented
using the Google cloud platform (https://cloud.google.
com, accessed: 5 June 2021).

3. Results

This section presents the results of our study, which include
an exploratory data analysis, ML techniques for COVID-19
versus pneumonia patients and COVID-19 versus healthy pa-
tients, as well as the hyper-parameters selection for COVID-19
versus healthy cases.

https://cloud.google.com
https://cloud.google.com
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TABLE 2. Range and selected values for the indicated ML technique, model, and parameter.
ML technique Model* Parameter Range Selected

SVM

Radial C [0.01, 788] 11.55

Linear
Sigma [5.87E–4, 0.1] 0.01
C [0.05, 880] 3.20

Polynomial
C [4.74E–2, 186] 0.99
Scale [1.56E–5, 1.73] 1.73
Degree {1, 2, 3} 1

RF

100

Mtry** {1,...,97}

81
300 74
500 97
1500 97
2000 81

where Model*: refers to the kernel function or to the number of trees
for the SVM or RF techniques, respectively; and Mtry**: is a parameter
corresponding to the number of variables available for splitting at each tree
node in RF.

TABLE 3. Summary statistics of the indicated data set.
Female patients Male patients p-value Total

Group N (%) Age mean (SD) N (%) Age mean (SD) % (b/z) Age N (%) Age mean (SD)

Healthy 1345 (44) 44.9 (16.6) 1701 (56) 45.7 (16.4) < 0.001(∗∗) 0.170(n.s.) 3046 (92.9) 45.3 (16.5)
Pneumonia 33 (53) 38.2 (19.1) 29 (47) 48.1 (18.0) 0.590(n.s.) 0.041(n.s.) 62 (1.9) 43.7 (18.6)
COVID-19 56 (38) 53.8 (20.9) 92 (62) 53.1 (20.5) < 0.001(∗∗) 0.842(n.s.) 148 (4.5) 53.4 (20.7)
Total 1434 (43.6) 45.1 (16.8) 1822 (55.5) 46.2 (16.7) < 0.001(∗∗) 0.105(n.s.) 3256 (100) 45.1 (16.7)
where (b/z): binomial or z-test, (W/t): Wilcoxon or t-test, (n.s.): non-significant, (∗∗): significant at 1%.

3.1 Exploratory data analysis and global
performance of ML techniques

Table 3 reports the descriptive statistics for the data under
study. There are 3046 cases (instances) of healthy subjects
(44% females), 62 cases of pneumonia (53% females), and
174 COVID-19 positive patients, with 148 cases with known
sex (38% females). COVID-19 patients have a mean age
of 53.4 years (SD = 20.7 years), pneumonia patients have a
mean age of 43.7 years (SD = 18.6 years), and healthy patients
have a mean age of 45.3 years (SD = 16.5 years). From this
table, observe that ages and proportions of females and males
are, in general, relatively similar in statistical terms with non-
significant p-values at 1%, except for proportions in healthy
and COVID-19 groups. However, a much larger number of
healthy cases (compared to COVID-19 and pneumonia) is
detected. Since the instances of COVID-19 and pneumonia
are less, four different data-balancing methods were used:
down-sampling, up-sampling, SMOTE, and rose. The data-
balancingmethods were applied before and during the KFRCV
re-sampling process. For tuning, threshold, and model selec-
tion, we considered those that maximize the AUROC.

The classification performance of AUROC, sensitivity, and
specificity metrics for each ML technique is shown in Fig. 3
through boxplots. The left panel depicts this performance to

discriminate among COVID-19 and healthy patients, whereas
the right panel displays the results for COVID-19 and pneu-
monia cases. The figure shows the statistical distribution
of the results obtained based on all repeated cross-validation
processes and all instances of hyper-parameter search (the total
number of trained and tested models). Note that very similar
distributions are detected in most cases, except for the RF
model when comparing COVID-19 and pneumonia groups,
regarding the sensitivity and specificitymetrics, where a higher
variability and asymmetry are assessed.

3.2 Machine learning for COVID-19 versus
healthy patients

Since the number of healthy patients is significantly greater
than COVID-19 patients, we use a down-sampling method
to create a balanced data set. Such a balancing method is
repeated ten times. ANN, RF, and SVM models are applied
using 5-fold and 10-fold cross-validation processes for each of
the repeats. An alternative approach considers balancing in the
cross-validation process, that is, each of the k-folds is balanced
in terms of the number of COVID-19 and healthy cases so that
this is an internal sampling. The classification performance for
COVID-19 and healthy patients based on external and internal
samplings is shown in Fig. 3-left panel.
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FIGURE 2. Algorithm followed for data analytics, model building, and sampling.

Table 4 reports the AUROC, sensitivity, and specificity
averages obtained by each ML technique when comparing
COVID-19 versus healthy patients. Results are averaged
based on the cross-validation for each of the different hyper-
parameters used to train the models. When an external
balancing is considered, ANN, RF, and SVM models have
a mean AUROC of 84.3%, 86.2%, and 86.1%, respectively.

Note that RF and SVM have very similar AUROC values (no
statistical difference with a p-value = 0.33). However, both
RF and SVM perform better than the ANN technique (p-value
= 0.001 and 0.003, respectively). The mean sensitivity-
specificity values for ANN, RF, and SVM were 74.9–77.9%,
74.2–81.1%, and 76.3–79.1%, respectively. The results
obtained for the internal down-sampling do not report a
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FIGURE 3. Boxplots of the global performance of the indicated ML technique, metric, and group comparison.

significant difference in relation to the external sampling.

TABLE 4. Results (in %) of the indicated sampling, ML
technique, and metric for healthy patients.

Sampling ML technique AUROC Sensitivity Specificity

External
RF 86.23 74.18 81.05
SVM 86.07 76.25 79.09
ANN 84.33 74.94 77.87

Internal
RF 86.67 74.94 81.40
SVM 85.99 76.32 78.80
ANN 83.53 74.09 77.20

3.3 Machine learning for COVID-19 versus
pneumonia patients
Classification models for pneumonia and COVID-19 patients
were also developed. Note that the number of positive COVID-
19 subjects is greater than pneumonia patients (146 and 62
cases). Nevertheless, the total number of cases (pneumonia
and COVID-19) is not sufficiently large. Therefore, balancing
methods (down-sampling, up-sampling, rose, and SMOTE)
were applied only during the cross-validation re-sampling pro-
cess (internal method).
Table 5 reports the AUROC, sensitivity, and specificity

averages obtained by each ML technique when comparing

COVID-19 versus pneumonia patients. The best-balanced
sensitivity-specificity is obtained, for all ML techniques,
when the down-sampling method is utilized. High unbalanced
sensitivity-specificity is observed particularly for the RF
model with the rose method. In addition, the SMOTE
provides good sensitivity scores, but it generates low
specificity, meaning that it fails at distinguishing pneumonia
cases from COVID-19 patients. Classification performance
for COVID-19 and pneumonia cases shows higher variability
(see Fig. 3) across all ML techniques when compared to the
healthy subjects. The high variability observed for sensitivity
and specificity results from the poor performance of some
data-balancing methods, as observed in Table 5. ANN, RF,
and SVM models have a mean AUROC of 78.3%, 80.0%,
and 79.8%, respectively. RF and SVM have no statistical
difference (p-value = 0.58), but both RF and SVM perform
better than the ANN technique (p-value = 0.01 and 0.04,
respectively). The mean sensitivity-specificity values for
ANN, RF, and SVM were 74.9–65.3%, 64.6–69.7%, and
77.8–65.8%, respectively.

3.4 Hyper-parameters selection for
COVID-19 versus healthy cases

Table 6 reports the metric performance for different models
defined by hyper-parameters of the ML techniques. Results
are presented for the down-sampling method as it reported the
best results. Focusing on AUROC values, most models per-
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FIGURE 4. ROC for RF (left) and SVM (right) with the indicated number of trees and kernel.

TABLE 5. Results (in %) of the indicated balancing, ML
technique, and metric for pneumonia vs COVID-19.

Balancing ML technique AUROC Sensitivity Specificity

Down-sampling
RF 79.41 69.73 72.79
SVM 80.10 74.09 70.86
ANN 77.81 70.21 69.59

Up-sampling
RF 82.08 86.78 53.46
SVM 81.59 80.97 65.76
ANN 79.63 80.35 60.85

Rose
RF 77.09 18.97 99.29
SVM 77.70 72.09 67.15
ANN 76.27 68.50 68.76

SMOTE
RF 81.54 82.87 59.26
SVM 79.67 83.90 59.45
ANN 78.55 80.57 60.42

form similarly, with the best results being obtained by SVM,
independently of the chosen kernel function used. Results are
described as the mean value with its 95% confidence interval.
Also, note that such an interval is narrow, in most cases,
indicating a stable performance for most models. A second
important observation is that all SVM models presented the
best sensitivity-specificity balancing.

Interestingly, both SVM and RF perform better than CNN
(for example, AUROC value of 0.89 for SVM against 0.84 for
CNN). ANN (multi-decay, multi-layer) and CNN are trained
using 5-fold cross-validation due to computational burden. In
contrast, SVM and RF are trained and evaluated using 10-fold
cross-validation. The high AUCROC scores obtained by both
RF and SVM are depicted in Fig. 4. Note that SVM models

show a better balance between the true positive rate (TPR) and
FPR, resulting in a higher AUROC score.
For a better model performance analysis, Table 7 presents

accuracy and F1-score. Despite being well-known perfor-
mance metrics, models are selected by maximizing the AU-
ROC. Therefore, these values do not represent the best perfor-
mance dimensions of the process.
Computational times were extracted for the best models

and portrayed in Table 6. Besides the computational burden
mentioned, Table 8 also shows that ANN models use almost
500% higher computational time than the next most lasting
model (RF-2000). Note that computational times for CNN are
not reported. CNNmodels were trained using theGoogle cloud
platform with significantly different computational technical
characteristics.

4. Discussion and final remarks

Conventional chest radiography can be helpful to identify
different patterns of lung alterations in COVID-19 patients,
allowing us to grade disease severity based on total lung
involvement. In addition, X-ray has a shallow radiation dose,
and it is more accessible and cheaper than other diagnostic
imaging methods, such as CT scans. Furthermore, trained
professionals are needed to interpret the results. Thus, the
support of tools from artificial intelligence for fast and accurate
diagnosis is crucial, especially when resources are scarce, and
response times must be immediate to avoid the spread of
the disease. This research demonstrated the capabilities of
ML techniques to identify COVID-19 cases from healthy or
pneumonia patients using X-ray images. The flexibility of
simple models and accessibility to X-ray images are needed,
particularly for health systems of hospitals located in rural
zones that lack infrastructure. This limitation is common in
developing countries, as in Latin America, where the number
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TABLE 6. Results (in %) for the mean and its 95% CI of the indicated ML technique, model, and metric.
ML technique Model k-folds AUROC Sensitivity Specificity

SVM
Radial 10 0.90 (0.90, 0.90) 0.79 (0.77, 0.81) 0.83 (0.81, 0.85)

Polynomial 10 0.89 (0.88, 0.90) 0.81 (0.79, 0.83) 0.81 (0.79, 0.82)
Linear 10 0.90 (0.88, 0.90) 0.80 (0.78, 0.82) 0.81 (0.79, 0.82)

RF

1500 10 0.89 (0.87, 0.90) 0.76 (0.74, 0.78) 0.82 (0.80, 0.83)
2000 10 0.89 (0.87, 0.90) 0.76 (0.74, 0.77) 0.82 (0.80, 0.84)
300 10 0.88 (0.87, 0.90) 0.76 (0.74, 0.78) 0.82 (0.80, 0.84)
500 10 0.88 (0.87, 0.89) 0.76 (0.74, 0.79) 0.82 (0.80, 0.84)
100 10 0.88 (0.87, 0.89) 0.75 (0.74, 0.77) 0.81 (0.79, 0.83)

ANN
Multi-decay 5 0.89 (0.88, 0.90) 0.80 (0.77, 0.81) 0.83 (0.81, 0.85)
Multi-layer 5 0.86 (0.85, 0.88) 0.76 (0.73, 0.78) 0.81 (0.79, 0.83)

Convolutional 5 0.85 (0.82, 0.87) 0.76 (0.71, 0.80) 0.74 (0.68, 0.79)

TABLE 7. Results (in %) for the mean and its 95% CI of the indicated ML technique, model, and metric.
ML technique Model Accuracy F1-score

SVM
Radial 81.20 (80.03, 82.38) 80.65 (79.35, 81.95)

Polynomial 80.71 (79.39, 82.02) 80.59 (79.20, 81.99)
Linear 80.31 (78.89, 81.73) 80.08 (78.57, 81.58)

RF

100 76.81 (75.26, 78.35) 76.06 (74.45, 77.67)
300 76.46 (75.02, 77.90) 75.69 (74.16, 77.23)
500 76.75 (75.31, 78.19) 76.00 (74.46, 77.55)
1500 76.67 (75.22, 78.11) 75.80 (74.24, 77.36)
2000 76.49 (75.07, 77.92) 75.73 (74.19, 77.27)

TABLE 8. Runtimes (in seconds) of overall
cross-validation for the indicated ML technique, model,

and metric.
ML technique Model Runtime (in seconds)

SVM
Radial 103.11
Linear 876.14

Polynomial 87.83

RF

100 111.20
300 323.56
500 535.30
1500 1598.52
2000 2138.20

NN
Multi-decay 9537.21
Multi-layer 9496.19

Convolutional -

of COVID-19 cases has reached dramatically high levels in
countries like Argentina, Brazil, Chile, Colombia, and Peru.
Besides, the lack of appropriate infrastructure generates an
increasing need for diagnosis techniques that can be efficiently
utilized and updated.
In this context, ML techniques offer the appropriate flexi-

bility without a compromise in predictive accuracy. However,
ML models have not been thoroughly studied in the existing
literature, as they are generally used as benchmarks for more
complex algorithms, such as CNN or other DL models. Nev-
ertheless, often CNN models are an impractical solution due
to their high computational requirements and lack of access to
data and infrastructure in rural areas of developing countries.
Thus, the results obtained in our study offer higher discrim-
inatory capability in comparison to other standard clinical-
based diagnosis techniques. For instance, scientists from Johns
Hopkins Medicine [52] have shown that, over the four days
of infection before the typical time of symptom onset, the
mean FNR is 67% with a 95% confidence interval of 27% to
94%. Another recent systematic review reinforces the need for
repeated testing in patients with suspicion of COVID-19 infec-
tion, given that up to 29% of patients could have an initial PCR
false-negative result [53]. Furthermore, PCR’s limitations
include the need for higher-level laboratory facilities, proper
swab sample techniques, clinician experience, and error-free
patient samples [54, 55]. Hence, if clinical suspicion is high,
an infection should not be ruled out based on a PCR test only
[52]. Therefore, as shown in this study, MLmodels are suitable
tools that provide comparable or better results than clinical
tests. Thus, ML models can be used as a support tool for fast
initial screening of patients when diagnosing for COVID-19.

The full factorial design of experiment used in this paper
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provided a more stable discriminatory accuracy or classifica-
tion power of ML techniques. Indeed, we accounted for design
parameters, such as different data balancingmethods, that must
be studied in a context that arises in a COVID19 pandemic
(a large number of PCR tests and a small number of positive
cases). Among the evaluated models, SVM obtained the best
results when correctly identifying infected patients. SVMwith
different kernel functions provided AUROC values as high
as 90% with well-balanced sensitivity-specificity scores of
approximately 80% with narrow confidence intervals.
It is important to note that the results presented in our study

can be further improved. Our findings were obtained from
a relatively small set of positive infected patients (174) with
publicly available X-ray exams. Our findings must be vali-
dated and improved with access to both larger sets of images
and exams with better image quality. Therefore, there seems
to have great opportunities to further enhance the accuracy of
ML techniques’ results. This is significantly important since
ML is transforming the current medical practice and plays
a critical role in the digital healthcare era [56]. These ML
techniques help doctors to improve their diagnostic ability,
impacting patients’ prognostic, quality of life, and effective
treatment prescriptions. Moreover, the use of such techniques
has also implications for the health systems, reducing exam
time, saving costs for themedical practice, and improving daily
productivity [57].
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