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Abstract
The COVID-19 pandemic is one of the worst public health crises in Brazil and the world
that has ever been faced. One of the main challenges that the healthcare systems have
when decision-making is that the protocols tested in other epidemics do not guarantee
success in controlling the spread of COVID-19, given its complexity. In this context,
an effective response to guide the competent authorities in adopting public policies to
fight COVID-19 depends on thoughtful analysis and effective data visualization, ideally
based on different data sources. In this paper, we discuss and provide tools that can
be helpful using data analytics to respond to the COVID-19 outbreak in Recife, Brazil.
We use exploratory data analysis and inferential study to determine the trend changes in
COVID-19 cases and their effective or instantaneous reproduction numbers. According
to the data obtained of confirmed COVID-19 cases disaggregated at a regional level in
this zone, we note a heterogeneous spread in most megaregions in Recife, Brazil. When
incorporating quarantines decreed, effectiveness is detected in the regions. Our results
indicate that the measures have effectively curbed the spread of the disease in Recife,
Brazil. However, other factors can cause the effective reproduction number to not be
within the expected ranges, which must be further studied.
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1. Introduction

The epidemic of COVID-19, caused by the severe acute res-
piratory syndrome - coronavirus 2 (SARS-CoV-2), has spread
rapidly throughout the world. Since February 2020, cases have
been reported in more than 26 countries, making it one of the
biggest public health crises in the world [1–3]. In Brazil, the
first case of the disease was confirmed in the city of São Paulo
on 26 February 2020. Since then, the epidemic has spread
across the country, forcing Brazilian states to adopt measures
of social distancing to contain the virus. Currently, Brazil
has accumulated more than 88 thousand deaths by COVID-19,
with over 2000 deaths in Recife, the capital of the northeastern
Brazilian state of Pernambuco. However, the growth rate of
the epidemic still does not show clear signs of diminishing,
and the disease continues to expand in the country, albeit at
a slower pace [4]. Looking at cumulative curves of deaths
attributed to COVID-19 by 01 November 2020, all Brazilian
states had progressed to the late growth regime, that is, they
were either in the transition to saturation or in the saturation
stages (epidemic control), where the cumulative number of
cases or deaths tends to a leveling plateau (slowdown in their
death curves) [5]. This situation is presented in diverse Latin

American countries [3, 6].
In the context of the response to the COVID-19 pandemic,

note that it is essential to build strategies based on open and
shared knowledge so that the circulation of information is
faster. Thus, the iteration of emerging research related to
this new disease allows for greater integration of multiple
data sources to map and anticipate the spread of COVID-19.
Publishing open resources for communication to the public as
well as continuing education and widespread dissemination
of expertise is also essential. This facilitates the continuity
of services and economic activity, which have been strongly
affected [7–9], especially when many people are in quarantine
or precarious conditions, as imposed by the COVID-19 pan-
demic.
The complexity and changes of an epidemic or outbreak,

such as COVID-19, imply a dynamic response in public health
policies, control protocols, and data analysis. Overall, we can
identify four stages of the outbreak response. First, the detec-
tion stage, which starts with the first case and ends with the first
intervention activities (for example, patient isolation, contact
tracing, and vaccination), involves surveillance systems [6]
and mainly qualitative risk assessment measures. Second, the
initial response is the part of the intervention during which
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the first simple analysis can take place, essentially centered
around the dynamics of infection transmission. Third, this
also merges into the intervention stage, where more complex
analyses may be needed (for example, vaccination strategies,
intermittent lockdown, palliative drugs) [10, 11], which ends
once the last reported case recovers or dies. At last, and fourth,
post-intervention is the stagewhere lessons learnedmay help to
improve the protocols and preparedness for the next epidemic.
An essential feature of the epidemic response is the growing

focus on exploiting all available data to monitor the stages of
this response and provide rapid reaction, enabling evidence-
based decision-making [3, 6, 12, 13]. Using data to improve
situational awareness is complex because it involves various
related functions and techniques, from collecting the data at
service points to generating informative situational reports as
dashboards, tweets, sensors, etc. [3, 10, 14]. In the case of
Recife, Brazil, we can mention the collaborative efforts of:
• Data and Analysis for Decisions and Operations (DADO),

whose website is available at dado.recife.br (accessed on 10
August 2021),
• Cooperative Research Network on Modelling

the COVID-19 Epidemic and Non-Pharmacological
Interventions (MODINTERV), whose website is
available at fisica.ufpr.br/redecovid19/index.html and
fisica.ufpr.br/modinterv (accessed on 10 August 2021), and
• Computational Agricultural Statistics Laboratory (CAST-

Lab), whose website is available at castlab.org (accessed on 10
August 2021).
These organizations provide different indexes, metrics, and

data visualizations to inform the population about the stage of
the epidemic.
The objective of our investigation is to discuss and provide

tools that can be helpful from the perspective of data analytics
to respond to the COVID-19 outbreak in Recife, Brazil. The
rest of the paper is organized as follows. Section 2 presents
the methods used in this research as well as details of the data
employed. Section 3 reports the results obtained, while Section
4 concludes and discusses the main findings of the study, as
well as challenges and opportunities, limitations, and ideas for
future research.

2. Materials and methods

2.1 Materials
For smart analytics, it is needed to employ and optimize
various freely accessible data sources to update and select
databases [15, 16]. Initial data about the care of COVID-19
suspected patients, or patients who presented moderate
symptoms of the disease, are recorded in the Family Health
Units. These units consist of a public health network
(Brazilian Unique Health System) composed of private
clinics, ambulatory centers, and public hospitals located in
different neighborhoods of the Brazilian cities, such as Recife.
Also, healthcare systems for patients who use supplemental
services (Brazilian Supplementary Health) provide data about
severe disease symptoms. Another way of tracking and
recording data are the call centers created to answer questions
about the symptoms and guide the population in their care.

Therefore, the Brazilian Ministry of Health implemented
the Research Electronic Data Capture (REDCap), e-SUS
Epidemiological Surveillance (e-SUS-VE), and Influenza
Epidemiological Surveillance Information System (SIVEP-
Gripe) platforms to report prospective suspected, probable,
and confirmed COVID-19 cases as informed by public
and private health services (primary and emergency care).
The above-mentioned systems are interrelated on the
COVID-19 website (infoms.saude.gov.br/extensions/covid-
19_html/covid-19_html.html, accessed on 10 August 2021),
which summarizes daily the aggregated counts from both
platforms. In the case of Recife, Brazil, governmental and
official data sources come from:
• The Center for Strategic Information on Health Surveil-

lance, whose website is available at cievsrecife.wordpress.com
(accessed on 10 August 2021).
• The Secretariat of Planning and Management from

the Pernambuco State, whose website is available at
www.seplag.ce.gov.br (accessed on 10 August 2021).
The Brazilian government and public data sources are avail-

able at:
• brasil.io/dataset/covid19/caso (accessed on 10 August

2021).
• dados.gov.br/dataset (accessed on 10 August 2021).
• github.com/wcota/covid19br (accessed on 10 August

2021).
The mobility indexes of the Google Commu-
nity Mobility Reports (GCMR) are available at
www.google.com/covid19/mobility (accessed on 10 August
2021). The GCMR collates data from those accessing Google
applications with smartphones or handheld devices, allowing
us to record the location history or traceability. In addition,
data based on scientific articles reviewed by peers that report
primary data as the gold standard for data inclusion provide
further information cited in the references of this article.
To find additional details for each case or patient, the data

can be augmented with medical reports, registry data, and cap-
tured reports (web scraping), primarily through news websites.
The primary databases contain epidemiological records used
for surveillance, evaluation, and research to address public
questions. The administrative records (such as outpatient and
hospital data anonymized and privatized) are employed for
accounting and controlling the production of the services pro-
vided. Themedical records contain privatized and anonymized
clinical data on patients (in this work, these data were not used
because they would have to be approved by the respective
ethics committees before they could be used for any kind of
implementation). The databases of the Brazilian Ministry of
Health have demographic and socio-economic characteristics
such as conditional cash transfer and housing programs. Com-
bining these databases is employed to study social determi-
nants of health and evaluate policies for epidemic control.
Among the recorded variables to be used, we can cite: (i)
daily cases reported; (ii) daily deaths reported; (iii) age; (iv)
sex; (v) complete blood analyses (which is a type of blood
test) on patients tested and other coronavirus or influenza
pathogen diagnoses; (vi) isolation index of confirmed and
suspected cases; (vii) number of hospitalizations; (viii) number
of hospital beds; (ix) population density for the year 2020 by
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FIGURE 1. Simplified flow diagram on smart analytics for Brazilian COVID-19 data. The process involves feedback of
augmented data by using data cleaning, data transformation, and feature extraction by applying learning algorithms that can be
employed to prioritize the risks factors according to the quantified judgment of a decision-maker.

age groups and geographical mesoregions; (x) age distribution
of confirmed COVID-19 infection rates; (xi) specific rates by
age group; and (xii) intensive care unit (ICU) admissions for
COVID-19 cases; among others.
The CASTLab, DADO, and MODINTERV platforms inte-

grate several interconnected modules, including tools for data
collection, data preprocessing, feature extraction, learning,
classifying, making decisions, and data augmentation. These
tools and their inter-dependencies are summarized in a simpli-
fied workflow sketched in Fig. 1, representing a framework for
producing insights using smart analytics to combat outbreaks
(SACO). From learning modules, it is possible, for example,
to evaluate the epidemic curves via statistical methods, trends
models, susceptible, exposed, infectious, recovered (SEIR)
epidemic models, and Shewhart cohort chart, among others.
Also, rates, averages, and another quantity are provided such
that, if correlated with vaccination rates, hospital beds, popu-
lation density, and under-reported cases, permit us to capture
trends, produce epidemiological/clinical profiles, and identify
possible risk factors for mortality of Brazilian COVID-19
patients under different aggregated levels, such as population
segment, or region.
The classification of epidemic curves by including covari-

ate data, such as vaccination rates, hospital beds, population
density, and under-reported cases, implies a certain risk level
(high or low). Thus, a decision-maker can choose to implement
interventions to reduce the number of fatalities while softening
the economic impact of the epidemic. Implementing epidemic
curves by using purely statistical and mathematical techniques
that evaluate quantities, such as rates and averages, to capture
the trends is quite challenging. In this sense, SACO aligns
with the emerging data science domain that employs scientific
methods, processes, algorithms, and systems to extract help-
ful knowledge to respond to the COVID-19 epidemic. The
SACO intersects health, economy, public policy knowledge,
planning, epidemiology, methodological development, and in-

formation technologies to collect, select, analyze, visualize,
model, simulate, optimize, and report outbreak data of an
epidemic in a smart and interconnected way.
The SACO used in Brazil is based on a wide range of ap-

proaches including, among others: (i) gathering data, database
design and mobile technology [17]; (ii) statistical estimates
with the maximum likelihood method [18, 19]; (iii) interactive
data visualization [20–22]; (iv) geostatistics [23, 24]; (v) graph
theory [25–27]; (vi) Bayesian statistics [28, 29]; (vii) math-
ematical and computational modeling [30–33]; (viii) genetic
analyses [34, 35]; (ix) evidence synthesis methods [36–39];
and (x) statistical quality control charts adapted to monitor
COVID-19 deaths and other indexes [40, 41].
After the initial entry of records in the platform, the database

should undergo a consistency check and analysis utilizing
complementary methodologies such as data anonymization,
imputation, and data linkage to identify possible duplicate
records and missing values effects. Using the number of
confirmed COVID-19 cases and deaths reported up to 10
August 2021, we apply data-driven innovative epidemiology
tools. Among them, we can mention the manual verifica-
tion performed by data curators or the use of statistical and
artificial intelligence tools [42], such as probabilistic record
linkage, feature hashing, and principal component analysis
[43, 44], among others [45, 46]. The epidemiological out-
break of COVID-19 can be investigated with the verified data,
including descriptive mapping of occurrences over time and
estimation of the main epidemiological parameters employing
mathematical models. Specifically, we may gain intelligent
insights from epidemic curves that represent the number of new
cases or deaths per unit of time, based on the date of symptom
onset [47].
We put here only some of the smart tools and statistical

methods used by the CASTLab, DADO, and MODINTERV
platforms as illustration. We utilize the moving average model
to estimate the non-stationarity in the number of confirmed



21

COVID-19 cases and deaths to identify the moments when
there was a significant change in the time-series trend. Note
the importance of determining the rhythm of contagion after
a policy intervention (such as social distancing, quarantine,
closing schools). Also, we use georeferenced standardized
data on specific settlements or areas, typically obtained from
administrative units such as neighborhoods or census sectors.
We utilize choropleth charts as a thematic map in which areas
are colored proportionally to a statistical variable that indicates
an aggregate summary of a geographic characteristic within
each area. These geographical records help to assess the spread
of contagion in a macro view andmakemassive contact tracing
between regions easier to monitor. Thus, when implementing
successful protocols for containing the epidemic, such as social
isolation and containment barriers (for example, vehicles and
individuals’ flux where are not allowed circulation between
different geographical locations), does the handling of the
pandemic to be more efficient, that is, the number of deaths
and contagions decreases.
The quantification of transmissibility during epidemics is es-

sential to design and adjust public health responses. Epidemics
can be measured by the effective or instantaneous reproduction
number, that is, the average number of secondary cases caused
by an infected individual. Knowledge of the reproduction
number is key to understanding the dynamics of any infec-
tious disease, and these should be reevaluated as the epidemic
progresses in space and time. The instantaneous reproduc-
tion number, which considers the speed with which a disease
spreads in a population, is an epidemiological parameter that
quantifies the average of contagions that an infected person
causes, assuming that disease transmissibility is constant in
a window of time [6]. Thus, an effective quarantine restricts
the free spread of the disease and maintains this parameter at
values less than one to achieve a controlled spread [6]. With the
implementation of COVID-19 control measures, the disease
transmissibility is likely to change as well. Based on the
surveillance data of COVID-19, we calculate the time-varying
reproduction number, instantaneous reproduction number, and
peak date across basic reproduction number, R0, namely, after
interventions. This is conducted to evaluate its changing
dynamics and determine the effectiveness of possible inter-
vention strategies as vaccination policies. Note that R0 is the
expected number of cases generated by one case in a population
where all individuals are susceptible to infection.
The epidemic curves are helpful in many ways. They

provide a simple visual sketch of demographic dynamics that
may be used to assess the growth or decline of an outbreak
[48] and evaluate the effect of some measures, such as non-
pharmacological interventions. In addition, epidemic curves
often form the raw material employed by various modeling
techniques for monitoring and forecasting [49–51].

2.2 Statistical methods
Time-series model
We estimate the trend of the number of COVID-19 cases

per day in Recife, Brazil, with a time-series model as follows.
Let y (t) be the number of confirmed cases at time t. Then,
the trend of this series,m (t) say, can be estimated through the

moving average on day t given by

m̂(t) =
1

2d+ 1

d∑
i=−d

y(t+ i), (1)

with d defined in Eqn. 1 being a constant that regulates the
width of the data interval through which the average is cal-
culated, controlling the degree of smoothing. Observe that,
as d decreases, the moving average is more sensitive, so it
may capture recent trends very well, although it might produce
false alerts. Nevertheless, when d is large, these false alerts
are avoided, but the identification of current trends is more
transient [6]. The choice of d can be made according to the
seasonality of the minor scale detected and considering that
the confinement measures for the observation period were the
weekends.
Epidemic model
When intervention measures (such as lockdown and social

displacement) are put in place and a certain proportion of
the population gains immunity, interest switches to knowing
the time-varying effective reproduction number. Consider an
individual who turns infectious on day t. We denote by Re (t)
the expected number of secondary cases that this infectious
individual causes. We assume that the times of infecting others
and detecting this infectivity (for example, by symptoms or by
a test) coincides, that is, on day t, this person also appears in
the incidence time-series. The time interval between symptom
onset in the primary case and symptom onset in the secondary
case is called the serial interval (SI), whose associated sta-
tistical model is called the SI distribution. Note that the
SI is different from the generation time (GT), which is the
period between exposure of the primary and secondary cases.
However, since exposure is rarely observable, we must employ
the time series of incident symptom onsets as a basis for the
statistical inference [52]. Using a renewable equation, we can
estimate the time-varying effective reproduction number [53].
Here, we consider a simple growth model and denote by y (t)
the expected number of new symptom onsets that we observe
on day t.
Let (g1, ..., gM ) be the probability mass functions of the SI

distribution, that is, P (i) = gi, for i ∈ {1, ...,M}. The ex-
pected number of cases can be described by the homogeneous
linear difference equation stated as

y(t) = Re(t−1)g1y(t−1)+· · ·+Re(t−M)gMy(t−M) =
M∑
i=1

Re(t−i)giy(t−i),

(2)

where t ∈ {2, 3,…}, andwe ignore the termswhen t−M ≤ 0.
We can estimate Re (t) defined in Eqn. 2 by the method

proposed by Wallinga and Teunis (W&T) [54–56]. The prob-
ability that case i infected by case j, pij namely, given its
difference in time of symptom onset at (ti − tj), may be
expressed in terms of the SI distribution, denoted by ω, which
is formulated as

pij =
ω (ti − tj)∑
i ̸=k ω (ti − tj)

. (3)
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Thus, pij stated in Eqn. 3 is the probability that case i has
been infected by case j, normalized by the probability that case
i has been infected by any other case k. The effective repro-
duction number for case j is the sum of all cases i, weighted
by the relative probability that case i has been infected by case
j, that is, Rj =

∑
i pij . Therefore, Re (t) is obtained with

the W&T method by averaging the individual reproduction
number over all cases detected on the same day j, where tj =
t. The analysis can be carried out by utilizing the R0 package
of the R software. Another way to evaluate Re (t) is to use
the Robert Koch Institute (RKI) method, where a constant
generation time of four days is assumed [57]. The RKI method
estimates the time from infection to: (i) first symptoms to
be around five days; (ii) being infectious around three days
(which results in two days during which an affected person is
infectious butmight not suspect he/she is sick him/herself); and
(iii) infecting other people around four days.

The instantaneous reproduction number R (t) is interpreted
as the average number of secondary cases that each symp-
tomatic individual at time t would infect if the conditions
remained as they were at time t. Note that R (t) is evaluated
by comparing the number of new infections on day t with
the infection pressure from the days prior to t, that is, by the
expression established as

R(t) =
y(t)∑t

s=1 gsy(t− s)
. (4)

Note that R (t) given in Eqn. 4 is different from the basic
reproduction number, which is presented next. Unlike the
W&T forward-looking method, the estimate defined in Eqn. 4
is backward in time, whereas the timing of R (t) can make a
big difference when comparing it with intervention measures.
The estimator of the instantaneous reproduction number is
implemented in an R package named EpiEstim. If R (t) > 1,
it means that a case infects more than one person, resulting
in a spread of the virus, whereas R (t) < 1 translates into the
containment of the virus, as one case infects less than one
person.

We use a deterministic SEIR model (one-wave) to describe
the spread of the disease because of the uncertainty due to the
incomplete identification of the infected population. Note that,
at the beginning of the pandemic, there was no clear policy
on testing the population for SARS-CoV-2, and there were
no test kits that would allow the correct identification of the
actual infected cases. As mentioned, the SEIRmodel classifies
the population into four classes: susceptible (S), exposed (E,
infected but not yet infectious), infected (and infectious, I),
and recovered (R). The dynamics of the transitions between the
four different compartments (S, E, I, and R) is described by the
non-linear system of ordinary differential equations (ODEs)

given by

dS

dt
= −βSI

N
,

dE

dt
=

βSI

N
− σE,

dI

dt
= σE − (γ + µ)I,

dR

dt
= γI,

(5)

where the elements defined in Eqn. 5 correspond to N = S +

E+I+R, σ is the loss of latency rate, γ is the recovery rate, µ
is the disease-induced mortality rate, and β is the transmission
rate. We assume that those non-pharmacological interventions
(for example, the wearing of face masks, social distancing, or
self-isolation when sick) can decrease the number of contacts
per individual per unit of time during the epidemic. To accom-
modate such effect, we consider that β change in time t by the
dynamic formulated as

dβ

dt
=

1

τ
(β0β1 − β(t)) , t ≥ t0, (6)

where t0 is the starting time of the intervention (initial day) and
τ is the average duration of the interventions. Furthermore, β0

is the initial transmission rate and the product β0β1 represents
the transmission rate at the end of the epidemic. The explicit
solution to the equation given in Eqn. 6, subject to the con-
straint to β (t0) = β0, is stated as

β(t) =

{
β0, t < t0;

β0

(
β1 + (1− β1) e

−(t−t0)
τ

)
, t ≥ t0;

(7)

where the elements defined in Eqn. 7 are established in the
previous expressions. Once the SEIR model without the time-
dependent transmission rate is fitted, the basic reproduction
number is estimated [58, 59] as R0 = r/(γ + µ). Here, r is
the exponential rate of increase of cases at the beginning of the
epidemic, which, in turn, is estimated by fitting an exponential
function employing only the first data. The estimation of
parameters is based on a nonlinear curve fitted byminimization
of the sum of square errors (by utilizing the least squares
method). To solve the ODEs given in Eqn. 5, we use the ode
function of an R package named dSolve. This package has
implemented stiff and nonstiff integration routines utilizing
the ODE-PACK Fortran codes (LSODE, LSODES, LSODA,
LSODAR), DVODE, and DASPK2.0. A suite of Runge-
Kutta integrators and special-purpose solvers to efficiently
integrate 1-, 2- and 3-dimensional partial differential equations
are available. The dSolve package includes fixed and adaptive
time-step explicit Runge-Kutta solvers and the Euler method.
We employ the optim function of the R software that has
implemented the Nelder-Mead, quasi-Newton and conjugate-
gradient algorithms.

We use curves for the cumulative number of COVID-19
deaths as a function of time. Note that they can show three dis-
tinct regions of behavior in the first wave of epidemics. There
is an initial phase in which the epidemic curve is typically ex-

https://cran.r-project.org/web/packages/EpiEstim/index.html
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FIGURE 2. Qualitative outline of an epidemic curve (black) for the accumulated number of deaths, with an indication
of their different phases in the first wave of the pandemic, with the red circle indicating the change point of the curve.

ponential, based on the number of deaths observed on the first
day that a death occurred. This rapid rise is characterized by
the growth rate r. Note that contagion may result in a complex
network of human contacts or when mitigation measures are
adopted at the beginning of the epidemic. However, depending
on the complexity of the contagion dynamic, the growth may
happen more slowly than an exponential curve characterized
by a parameter q ∈ (0, 1), which interpolates between the lin-
ear regime (q = 0) and the exponential regime (q = 1). This
type of epidemic curve presents an inflection point, denoted
by tc and shown in Fig. 2, which corresponds to the instant in
which the accumulated curve changes its concavity, that is, the
growth rate reaches its maximum value and begins to decrease
after that. The final part of the curve, after the inflection
point, can be characterized by anα parameter that controls how
quickly the epidemic curve moves away from the linear trend
and bends towards the plateau. The plateau value, denoted by
the parameter K, represents the total number of deaths at the
end of the epidemic.

We may model the epidemic curves in a deterministic way
through a generalized Richards model (GRM) [52, 53]. Here,
the GRM is defined by the ODE formulated as

dC

dt
= r[C(t)]q

(
1−

(
C(t)

K

)α)
, (8)

where C (t) is the cumulative number of deaths at t, r is the
growth rate in the initial phase, as mentioned, 0 ≤ q ≤ 1 is the
parameter that enables us to interpolate among linear (q = 0),
sub-exponential (q < 1), and exponential (q = 1) growth. The
ODE stated in Eqn. 8 must be supplemented with an initial

condition given as

C(0) = C0, (9)

for a given value of C0. The exact solution of the expression
established in Eqn. 8 for 0 ≤ q < 1, subject to the constraint
shown in Eqn. 9, can be written implicitly as

t =
1

r(1− q)
C1−q

2F1

(
1,

1− q

α
; 1 +

1− q

α
;
Cα

Kα

)
− ti,

(10)
where 2F1 (a, b; c;x) is the hypergeometric Gauss function.
The constant ti given in Eqn. 10 is determined by the initial
condition C0 through the relation defined as

ti =
C1−q

0

r(1− q)
2F1

(
1,

1− q

α
; 1 +

1− q

α
;
Cα

0

Kα

)
. (11)

The inflection point, tc namely, of the curveC (t) is defined
as the time when the second derivative of C (t) with respect to
t is zero, that is, C̈ (tc) = 0, where the two points on the top
ofC (t) indicate the second derivative with respect to the time.
Using the expression formulated in Eqn. 11, we find that

tc =
K1−q

r(1 − q)

(
q

q + α

)(1−q)/α

2F1

(
1,

1 − q

α
; 1 +

1 − q

α
;

q

q + α

)
− ti.

(12)

where the elements defined in Eqn. 12 are established in the
previous expressions.
The solution of the GRM given in Eqn. 8 is attained in an

implicit form. It does not represent any numerical difficulty
since the solution can easily be obtained, for empirical curve
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fitting purposes, by simply treating the data in the same implicit
form, that is, as a curve of type C (t). In the case where
q = 1, the GRM defined in Eqn. 8 reduces to the standard
Richards model (RM), which has an explicit formula in terms
of elementary functions stated as

C (t; r, α,K, tc) =
K(

1 + αe−αr(t−tc)
)1/α . (13)

For fitting the formula defined in Eqn. 13 to empirical data,
it is convenient to set C (0) = C0, where C0 is the number
of deaths recorded on the first day that a death was reported.
Using that C(0) = K/ (1 + αe−αrtc)

1/α, we can eliminate
tc in favor of the other parameters, so we work with only
three free parameters, namely r, α, and K, to be numerically
determined. All statistical fittings may be performed using
the Levenberg-Marquardt algorithm to solve the corresponding
non-linear least-square optimization problem.
When estimating the model parameters from short time-

series, we have overfitting problems due to the redundancy of
parameters. This may lead, for example, to the estimation of
specific parameters that are outside of biologically reasonable
ranges or of other types. For instance, when applied to the
number of infected cases in an epidemic, the parameter α

should be constrained to the interval (0, 1). We use the GRM
instead of the number of deaths, but we assume that the same
constraint should be considered. For our purposes, we need
to consider the constraints 0 < r < 1 and 0 < α < 1 as
empirical criteria for validating the GRM, which is unsuitable
when the available data do not encompass the inflection point
tc. Nonetheless, as more data are considered, the model is ex-
pected to become more accurate. As an empirical criterion, we
consider here that the GRM is only acceptable if tc is less than
the time of the last data point. Hence, an intervention strategy
(for example, adding covariate data, such as vaccination rates,
hospital beds, population density, under-reported cases) may
be used to model the data by assuming that its next result is
captured by a change in the values of the parameters of the
GRM after a given time.
Control charts
Looking at monitoring the number of deaths, adapted She-

whart control charts can be strategically utilized to differentiate
variation due to the disease effect and variation due to common
causes. Adaptation of these control charts is needed given the
exponential behavior of indicators such as COVID-19 death
rates. The use of a control chart for monitoring COVID-19
was introduced in [40, 41].
In the context of an epidemic, such as COVID-19, it is

possible to analyze the evolution of indicators in a manner
analogous to that of a production process. The idea behind
the method assumes that observations are made periodically.
This is equivalent to having sample sizes nt = 1 analyzed
utilizingQ (t) or some statistic indicator as the mean, standard
deviation, or percentage. Its choice depends on the charac-
teristic measured in each item and is calculated to summarize
the values measured in the sample, S (t) namely, representing
the behavior of the process at time t. These statistics are
compared to the monitoring limits such as central line (CL)

as well as lower (LCL) and upper (UCL) control limits plotted
over time. In the case of the indicator of COVID-19 deaths per
day, the signal is not constant, and, in general, its growth is
exponential. Then, it is possible to model the signal and what
must be checked, in terms of stability, is the behavior of the
residuals of the fitted model. If the growth is modeled by an
exponential function described as

Q(t) = yt = aebt, (14)

where y (t) stated in Eqn. 14 is the number of deaths registered
on day t ∈ {1, ...,M}, a is the initial value of the growth
model, and b is the growth factor. Here, a and b are constants
to be estimated. Hence, log (y (t))   is a linear function on t

formulated as

log(y(t)) = log(a) + bt. (15)

The procedure for adapting the Shewhart chart to our context
of COVID-19 is described as follows in Algorithm 1.

Algorithm 1: Adapted Shewhart control chart

Step 1. Fit log (y (t)) defined in Eqn. 15 as a function of
time t via the linear model stated as

log(y(t)) = β0 + β1t+ εt, (16)

where β0, β1 are regression coefficients, and ϵt is a random
error of zero expected value and constant variance.

Step 2. Calculate the residuals of the model stated in Eqn. 16
as

ε̂t = log(y(t))− ˆlog(y(t)). (17)

Step 3. Obtain the limit of the Shewhart chart drawn up for the
residuals defined in Eqn. 17 as

Lresidual = ε̂+ 3σ̂Q (individual) , (18)

where σ̂Q is a measure of the variance of the statistic Q (t).

Step 4. Calculate the LCL and UCL of the Shewhart adding
and subtract Lresidual stated in Eqn. 18 to the values fitted by
the regression considering

LCLregression = ˆlog(y(t))− Lresidual ;

UCLregression = ˆlog(y(t)) + Lresidual .
(19)

Step 5. The CL and the respective control limits stated in
Eqn. 19 of the fitted Shewhart chart are calculated by expo-
nentiating the fitted values and the limit calculated in step 4.

The implementation of Algorithm 1 must be used the log-
arithm in base 10. In addition, it is possible that, in some
situations, null values are observed, that is, y (t) = 0, for
some t ∈ {1, ...,M}. Therefore, for implementing the adapted
Shewhart control chart, (1 + y (t)) must be employed as the
response variable.
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FIGURE 3. Epidemic curves for Recife, Brazil, with (a) temporal evolution of the recorded daily new COVID-19 deaths
during epidemic up to 23 July 2021; and (b) temporal evolution of the occupancy rate of ICU beds to evaluate current
capacity for clinical hospitalization up to 23 July 2021.

3. Results of smart analytics of the
COVID-19 epidemic in Recife, Brazil

The number of deaths and new daily reported cases captured
the trend in the data; see Fig. 3(a). We observe that, in
the first days of the epidemic, the growth curve is aligned
with an average increasing pattern of about 10% per day,
which approximately doubles the number of deaths each week.
However, during May 2020, the growth vastly exceeded this
level, increasing in several ways at a highly alarming pace.
This occurs especially about the installed capacity of hospital
beds monitored via the occupancy rate of beds, as shown in
Fig. 3(b), intended solely for the care of patients with COVID-
19 (identified by positive polymerase chain reaction -PCR- or
positive serological tests). At the end ofMay 2020, this growth
slowed down and started to grow well below 10% per day.
The geographical distribution of COVID-19 cases and

deaths was analyzed via density maps. In Fig. 4(a), we
visualize the number of COVID-19 deaths in Recife and
mesoregions (spatial aggregate of intermediate level that
includes municipalities and/or geographical administrative
subdivision) up to 23 July 2021. Note that the highest
incidence of deaths is in the Sertão region of Pernambuco
and the rural areas of its metropolitan region. This can be
explained by the precariousness of the healthcare center
network that directly impacts the hospital capacity of Recife
(urban area). Furthermore, Fig. 4(b) displays a choropleth map

by neighborhoods of Recife, with the number of COVID-19
cases in the last 24 hours up to 23 July 2021. Observe that the
highest incidence of new cases is in Boa Viagem zone (near
the beachfront), where there is less control of access to the
beach.
Fig. 5(a) and (b) show the temporal evolution of the effective

reproduction number with intervention dates. We look at the
curve over a short period at the beginning of the pandemic,
when the first containment measures were implemented. No-
tice that the intervention measures were effective in reducing
the spread of contagion. Also, Fig. 5(c) indicates the peak of
the incidence curve after intervention measures (red dashed
lines) and variations of the R0 (calibration of the SEIR model)
up to 08 June 2020. Note that delaying the intervention
measures increases R0, that is, the disease increased. As the
model did not produce a good fit, then other indicators and
models were implemented (this was an important insight into
the inability of the SEIR model to follow the dynamics of
the epidemic curves). In the case of Recife, it was possible
to verify that the epidemic curve via the GRM was in the
saturation phase until 30 July 2020, showing that the COVID-
19 mitigation measures adopted in Recife had a significant
effect on the control of the pandemic; see Fig. 6.
Control charts are strategic to differentiate between com-

mon and special causes of variations. As mentioned, they
are usually composed of a CL, representing the mean be-
havior (trend) and LCL and UCL, as introduced in Section
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FIGURE 4. Graphical representation of indicators with geographical data, where (a) number of new deaths by
mesoregions in Recife, Brazil, up to 23 July 2021; and (b) choropleth map by neighborhoods of Recife, with several cases
in the last 24 hours attributed to COVID-19 up to 23 July 2021.

2.2. Observing indicators such as the number of daily deaths,
oscillation occurs naturally. It is crucial to have a parameter
to distinguish when this behavior simply reproduces common
variation due to the phenomenon. A higher (or lower) point
does not necessarily mean the phenomenon is changing its
behavior, or this behavior is indeed indicating a change in
trend. Such reference is provided by the LCL, CL, and UCL
of the chart. If the process is stable, oscillation is expected
randomly around the CLwith almost every point between LCL
and UCL. Shewhart control charts have been used successfully

to make such type of monitoring for a long time. Rules often
known in statistical control processes may be used to monitor
the process. This monitoring of daily COVID-19 deaths in
Recife employed a seven-point location rule as suggested in
[40]. Phases are created each time the rule is implemented,
that is, each time, a set of seven consecutive points fall either
above or below the CL of the control chart. This means that,
within each identified phase, it is reasonable to suppose the
phenomenon (daily deaths) behaves consistently with the same
parameters (same trend and variation).
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FIGURE 5. Epidemic curves for Recife, Brazil, with (a) temporal evolution of the effective reproduction rate and dates
of intervention up to 30 July 2020; (b) temporal evolution of the effective reproduction number and dates of intervention
up to 30 July 2020; and (c) incidence curve at peak date dependently of basic reproduction number after interventions
measures (calibration of the SEIR model) up to 08 June 2020.

Fig. 7 illustrates an adapted Shewhart control chart for daily
deaths on each day in Recife up to 10 August 2021. Each
point (circle) represents a given number of deaths. Most of the
points are in black. Red points are used to mark the beginning
of each phase. Blue and green points represent Saturday and

Sunday days, respectively. Although point colors were kept
in the graph, they are enhancements, not main components
of the method, considering they play a secondary role in the
monitoring. The lines between points mainly show the growth
rate or trends at regular time intervals (days in our case).
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FIGURE 6. Qualitative outline of an epidemic curve (black) for the accumulated number of COVID-19 deaths, with
an indication of their different phases in the first wave of the pandemic, with the red circle indicating the change point
of the curve. The GRM fits the cumulative number of deaths by COVID-19 in Recife up to 30 July 2020, with the red circles
representing the data and the black curve being the fitted model.

The chart shows points representing the observed number of
deaths registered each day, along with the CL, indicating the
trend and control limits, LCL and UCL. Phases were identified
to monitor the situation and are shown in different colors.
Looking at the last phase (in yellow), note that, during the
period of 24 June 2021 to 21 August 2021, the number of
daily deathswas still under a descendant trend, with parameters
being consistent with the anterior phase (phase 10, between 24
April 2021 and 23 June 2021).

In addition to monitoring the number of COVID-19 deaths
by adapted Shewhart charts, openly available data should be
continuously selected and employed in modeling and sim-
ulation. Nevertheless, suppose the epidemic continues to
grow. In that situation, public health agencies may tend to
omit cases, only reporting the estimated number of COVID-
19 confirmed or suspected cases, as it has occurred in previous
large outbreaks, such as the H1N1 influenza pandemic [55].

The data available primarily on COVID-19 are insufficient
to investigate the impact of assumptions on future projections
related to the planning of public health policies. As detailed
data become less and less available as the epidemic grows, we
can have an augmented database structure that contains cali-
brated parameters of models utilized to train machine learning
algorithms [42] and produce only reports of the total of new
cases by location. Then, data/features augmentation, survey
data via probabilistic sampling design, and deep learning can
provide more insights into the outbreak.

4. Discussion, challenges and
opportunities, conclusions,
limitations, and future research

The city of Recife in Brazil is taking crucial steps to creating
a culture of building scenarios for designing and evolving
strategies for cities based on helpful tools of machine learning,
artificial intelligence, and other modern data analysis [42].
In Recife, such technologies have been implemented very
fast. For example, Shewhart control charts, machine learning
models, and automatic classification are innovations of the
existing protocols for outbreak control. The classification of
epidemic curves by including covariate data, such as vac-
cination rates, hospital beds, population density, and under-
reported cases, implies a certain risk level (high or low).
Then, implementing such curves by using purely statistical and
mathematical techniques that evaluate quantities, such as rates
and averages, to capture the trends is quite challenging.

In our analysis of Recife, Brazil, based on mesoregion data,
it is possible to generate clusters and explore the evolution
of the infection over time. We assessed the impacts on local
productive arrangements and, via data analysis, that isola-
tion barriers could have been implemented more effectively.
Using the data from the neighborhoods, it was possible to
understand which neighborhoods in Recife were more likely
to be infected by some contaminated cases coming from other
cities. Considering only the neighborhoods of Recife, it is
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FIGURE 7. Adapted Shewhart chart for daily deaths in Recife, Brazil, with phases up to 10 August 2021. Red points
mark the beginning of each phase. Blue and green points represent Saturdays and Sundays, respectively.

possible to understand associations between socioeconomic
indicators, epidemic data, and risk measures for neighborhood
prioritization. The results obtained via SACOmake it possible
to provide helpful information supporting disease monitoring
and progressive economic recovery in the state and city studied
as well as in other regions of Brazil and other countries.
We may employ machine learning algorithms that automat-

ically classify epidemic curves after training on augmented
data to solve this problem. These new tools will permit an
automatic epidemic analysis and offer fresh opportunities to
operationalize previously unexplored and rapidly growing data
sources as big data [46, 60], as well as to synthesize data
helping to understand epidemiological and risk patterns in the
city. Also, this may help to develop quantitative evidence and
decision-making in public policy for the health area. In this
sense, the approaches analyzed in [61–63] may help to imple-
ment improved methodologies in the city for disaster control.
Potential uses of machine learning and artificial intelligence
will enable us to improve the diagnostic accuracy and tools for
COVID-19 [42] (or any new disease or calamity), so obtaining
more reliable prognosis, targeted treatments, and increasing
the operational efficiency of health systems [64–68].
Potential future implementations of machine learning for

SACO in Brazil include disruptive technologies, as image-
based deep learning, which show clinical promise for fighting
the pandemic. For example, deep learning-based algorithms
improve the accuracy of pathology diagnosis compared to
experienced physicians [42, 69, 70]. Also, natural language
processing may be used as a tool to extract information from
structured and unstructured text data embedded in electronic
health records [71–75] to improve comprehension of the pan-
demic and to enhance decision-making systems.
We are beginning to understand the richness of opportunities

offered by these smart tools. There is a growing concern in
the academic community and in the public sector that results
based on automatic analysis are not perceived in the same
way as other interventions (for example, pharmacological)
[74, 76]. These tools do not have clear guidelines for their de-
velopment and rarely come under the same degree of scrutiny

[77]. Several high-quality publications have demonstrated a
lack of transparency, replicability, ethics, and effectiveness in
reporting and evaluating predictive models based on machine
learning and artificial intelligence.
This growing body of evidence suggests that while many

recommendations in best practices for designing, conduct-
ing, analyzing, reporting, assessing, and implementing clinical
tools can be borrowed from the traditional literature on eco-
nomics, health systems, medical statistics, and public policies,
they are not sufficient to guide the use of machine learning
and artificial intelligence in research [78–83]. The produc-
tion of such guidelines in Brazil is a significant undertaking
given the growing battery of machine learning and artificial
intelligence algorithms that have been developed, as well as
the multifaceted nature of performance assessment of clinical,
political, and social impact.
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