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Abstract
Patients with acute respiratory distress syndrome (ARDS) often require mechanical
ventilation (MV) and may experience high morbidity and mortality. The ventilatory
management of ARDS patients has changed over the years to mitigate the risk of
ventilator-induced lung injury (VILI) and improve outcomes. Current recommended
MV strategies include the use of low tidal volume (VT ) at 4–6 mL/kg of predicted
body weight (PBW) and plateau pressure (PPLAT ) below 27 cmH2O. Some patients
achieve better outcomes with low VT than others, and several strategies have
been proposed to individualize VT , including standardization for end-expiratory lung
volume or inspiratory capacity. To date, no strategy for individualizing positive-end
expiratory pressure (PEEP) based on oxygenation, recruitment, respiratory mechanics,
or hemodynamics has proven superior for improving survival. Driving pressure,
transpulmonary pressure, and mechanical power have been proposed as markers to
quantify risk of VILI and optimize ventilator settings. Several rescue therapies, including
neuromuscular blockade, prone positioning, recruitmentmaneuvers (RMs), vasodilators,
and extracorporeal membrane oxygenation (ECMO), may be considered in severe
ARDS. New ventilator strategies such as airway pressure release ventilation (APRV)
and time-controlled adaptive ventilation (TCAV) have demonstrated potential benefits
to reduce VILI, but further studies are required to evaluate their clinical relevance. This
review aims to discuss the cornerstones of MV and new insights in ARDS ventilatory
management, as well as their rationales, to guide the physician in an individually
tailored rather than a fixed, sub-physiological approach. We recommend that MV be
individualized based on physiological targets to achieve optimal ventilatory settings for
each patient.
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1. Background

The definition of acute respiratory distress syndrome (ARDS)
dates back to 1967 [1]. Despite 55 years of research and
clinical experience, ARDS management remains challenging,
and the syndrome is associated with a high mortality rate [2],
requiring intensive care unit (ICU) admission and mechanical
ventilation (MV) [3]. In recent decades, a huge effort has been
made to investigate the impact of lung-protective ventilation on
ARDS outcome and to modify ventilatory management strate-
gies to reduce the risk of ventilator induced lung injury (VILI).
Although several ventilatory strategies are now recognized as
the standard of care in the management of ARDS patients, an
individualized approach, which takes into account the limits
of physiological gain and the uncertainty concerning ventila-
tory manipulation on outcome, is now under consideration [4]
(Fig. 1 ). This review aims to discuss the cornerstones of MV
and new insights in ARDS ventilatory management, as well as

their rationale, to guide the physician in an individually tailored
rather than a fixed, less physiological approach.

2. Standard of care

2.1 Low tidal volume

The current standard of care of MV in ARDS includes lung-
protective ventilation targeting a low tidal volume (VT ) of 4–6
mL/kg of predicted body weight (PBW), and plateau pressure
(PPLAT ) below 27 cmH2O [5]. The introduction of these
targets dates back to the 2000 ARMA trial, where a traditional
approach of VT = 12mL/kg of PBWwith a PPLAT less than 50
cmH2Owas comparedwith a lung protective approach of VT =
6 mL/kg with a PPLAT below 27 cmH2O, showing that ARDS
patients with low VT had significant reductions in mortality
[6]. Although these large trials established that lung-protective
ventilation using lowVT should be pursued in ARDS, research
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FIGURE 1. Mechanical ventilation in ARDS: standard of care and rescue strategies. On the left, the cornerstones of
mechanical ventilation in acute respiratory distress syndrome (ARDS). On the right, possible rescue strategies in case of moderate
to severe ARDS refractory to conventional strategies. VT , tidal volume; PBW, predicted body weight; EELV, end-expiratory lung
volume; IC, inspiratory capacity; AI, artificial intelligence; PEEP, positive end-expiratory pressure; PaO2, arterial partial pressure
of oxygen; PPLAT , plateau pressure; ∆P, driving pressure; PL, pleural pressure; PES , esophageal pressure; RMs, recruitment
maneuvers.

regarding the use of low VT in ARDS continued over the next
20 years [7]. A large multinational prospective cohort study,
LUNG SAFE, identified a frequent underdiagnosis of ARDS
at ICU admission and noncompliance with lung-protective
ventilation strategies, resulting in a strong association with
mortality [8]. The detrimental sequelae of MV with high
VT have been clearly demonstrated [9]. Current approaches
suggest individualizing MV according to patient and disease
characteristics [4]. Given that VT has been strongly associ-
ated with mortality in patients with lower respiratory system
compliance (CRS) [10], it should ideally be set according to
the amount of aeration, using inspiratory capacity (IC), or end-
expiratory lung volume (EELV) measured at 30 cmH2O. This
could be considered the approach of choice since, in heteroge-
nous ARDS-affected lungs, lung volumes do not correlate well
with PBW. However, VT can be set according to EELV only
if positive end-expiratory pressure (PEEP) is reduced, since it
may change with CRS [11]. Therefore, IC seems to be a more

reliable technique at bedside, VT being easily achieved with
automated systems and artificial intelligence (AI) support [4].

2.2 Positive end-expiratory pressure

PEEP represents an essential component in ARDS manage-
ment. PEEP allows alveolar recruitment to potentially open
collapsed or edematous and inhomogeneously distributed areas
of the ARDS “baby lung” [12]. A recruitment maneuver (RM)
to open the collapsed alveoli is commonly followed by the
application of PEEP to keep recruited alveoli open and improve
gas exchange [4]. The use of high PEEP levels and RMs has
been questioned, however. Two meta-analyses of randomized
controlled trials (RCTs) concluded that low VT combined
with high PEEP improves survival in patients with ARDS
[13, 14]. A secondary analysis of the Open Lung Ventilation
Study showed improvement in oxygenation with high PEEP,
associated with lower risk of death [15]. On the contrary, in the
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ART trial, a PEEP higher than 15 cmH2O was associated with
increased risk of mortality in patients who were hemodynami-
cally unstable [16], while in the PHARLAP trial an aggressive
recruitment strategy was associated with cardiac arrhythmias
[17]. In a third scenario, three RCTs of lung-protective ven-
tilation in ARDS patients found no differences in mortality
with high and moderate PEEP levels [18–20]. Benefits of
PEEP application include alveolar recruitment, reduction of
intrapulmonary shunting, and improvement of oxygenation,
while harms include increased EELV, possible volutrauma,
andVILI [3, 21]. High PEEP is associated with increased static
stress, even though a meta-analysis concluded that neither
RMs nor higher PEEP affect mortality in ARDS patients [22].
Current recommendations suggest adopting high PEEP (>12
cmH2O) only for patients with moderate or severe ARDS [23].
However, individualization of PEEP according to the potential
for alveolar recruitment should be considered [24]. Indeed, it is
important to distinguish recruitable and non-recruitable ARDS
patients. In the latter, the airway pressure tends to increase,
causing hemodynamic impairment and lung overdistension,
whereas when the collapsed areas are recruitable, the lung can
benefit from reduction of pressures. Unfortunately, monitoring
alveolar recruitment at the bedside remains challenging and, to
date, no definitive recommendations on how to set PEEP are
available. A possible strategy could be to set PEEP according
to transpulmonary pressure (PL) or a low PEEP/arterial partial
pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2)
table, which does not seem to influence mortality [16, 25]. A
possible, relatively new strategy to estimate PEEP at bedside
expects to appraise the recruitment volume by performing two
pressure/volume (P/V) curves (at high and low PEEP) and
measuring the difference between the expired volume and the
volume predicted by the compliance of the respiratory system
above the airway opening pressure: ∆V rec

∆Prec where ∆Prec =

PEEPhigh−PEEP low.

The compliance of the recruited lung can be estimated by

the ratio:
∆V rec

(PEEPhigh−PEEPlow)

Crs above airway opening pressure or at PEEP low

[26]. When this ratio is equal to or greater than 0.5, patients
are more likely to be recruitable, and might need higher
levels of PEEP. In any case, from a clinical point of view,
PEEP should be set at the lowest level to achieve a minimal
acceptable peripheral saturation of oxygen (SpO2) (88–92%)
or PaO2 (55–70 mmHg) [27, 28], but keeping in mind possible
detrimental clinical effects on right ventricular function,
cardiac output, and lymphatic flow drainage [29, 30]. In
addition to the aforementioned methods for PEEP titration,
electrical impedance tomography (EIT), lung ultrasound
(LUS), and computed tomography (CT) should be mentioned.
As compared with pressure/volume curve, PEEP titration
using EIT was associated with improved oxygenation,
compliance, driving pressure, and weaning success rate
[31]. However, “optimal” PEEP levels determined by EIT
may differ significantly among ARDS patients (of around
10%) due to the presence of non-recruitable lungs and
heterogeneity of ventilation. The advantage of using EIT
at the bedside to individualize PEEP is the possibility of
identifying lung heterogeneity, thus avoiding alveolar cycling
and regional overdistension and minimizing the risk of VILI in

a personalized manner. Despite this potential advantage, the
literature on possible optimization of mechanical ventilation
using EIT in ARDS is still scarce, and further implementation
is needed [32]. LUS demonstrated good estimation of
lung recruitment at the bedside, with the limitation of not
assessing PEEP-induced lung hyperinflation [33], but ability
to distinguish between different ARDS morphologies (focal
vs. non-focal) [34]. The use of LUS to individualize PEEP
in patients with ARDS has several advantages, including
bedside availability, low cost, no ionizing radiation, and
relatively little dependence on operator skills. LUS provides
the possibility of observing changes in ultrasound patterns
during PEEP implementation and successfully selecting an
appropriate level of PEEP, and can detect response to the
application of RMs, helping the clinician distinguish between
recruiters and non-recruiters [35]. Other methods such as
CT could help in titration of PEEP in case of limitations
of noninvasive methods [36], allowing a visual, anatomical
analysis of lung recruitability [37]. However, CT has potential
disadvantages, including the impossibility to be performed
routinely and repeated due to the limitations of patient
transportability and ionizing radiations exposure, as well as
the need for possible increased sedation and neuromuscular
blockade. For this reason, CT cannot be considered for routine
use in individualizing PEEP at the bedside [35].

2.3 Driving pressure
Driving pressure (∆P) represents the ratio between VT

and CRS or the airway plateau pressure minus PEEP
(PPLAT−PEEP). In other terms, since CRS correlates with
aeration of the lung, ∆P represents an easy estimator of strain
(VT /aeration of the lung at end expiration) for that particular
VT . ∆P was first considered a component of lung protective
ventilation in 1998 by Amato et al. in a small RCT [38].
Since then,∆P has been adopted as a method to set PEEP, but
the benefits of this strategy are counterbalanced by potential
harms, including the fact that ∆P depends on the different
VT used as well as CRS . At high CRS , lower ∆P may help
achieve higher PEEP. ∆P may also be affected by changes in
chest wall compliance, and airway closure may confound the
relationship between PEEP and∆P [4]. Decreases in∆P have
been associated with survival benefit even when the patient
received protective plateau pressure and VT [39], while
∆P higher than 13 cmH2O was associated with mortality
[40]. A meta-analysis of 7 RCTs and 2 observational studies
also confirmed that ∆P above 15 cmH2O is associated with
significantly higher mortality [41]. In short, maintaining
∆P below 13 cmH2O and PPLAT below 27 cmH2O is the
best suggested approach, although an individualized tailored
strategy according to VT and PEEP is preferable [42]. It is our
opinion that the beneficial effects of reduced ∆P on outcome
are because of lower VT , and not to the reduction of ∆P with
higher PEEP, mostly associated with increased PPLAT .

2.4 Transpulmonary pressure
Transpulmonary pressure (PL) represents the distending force
of the lung determined by the equation PAW − PPL (where
PAW is airway pressure and PPL is the pleural pressure), and
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it is estimated by esophageal pressure (PES) [43]. In ARDS,
both lung and chest wall elastance (ECW ) are often impaired.
To induce alveolar recruitment, PEEP needs to overcome PL
[44, 45]. PAW is not injurious at tidal ventilation, provided
ECW is increased. PPL allows differentiation of lungs vs.
chest-wall mechanics [43]. In the supine position, PL acts
as the pressure that works on alveoli and airways due to the
pressure gradient between nondependent and dependent areas
[46]. Using PES to interpret PL, the difference between PAW

− PES at end-expiration or end-inspiration can reflect the PL
in the middle lung, while the difference in PL (∆PL) be-
tween end-inspiration and end-expiration estimates the ∆PES

[4]. Further, one should consider that PES overestimates the
pleural pressure by + 5 cmH2O in nondependent lung regions
(near the sternum), while underestimating by −5 cmH2O the
pleural pressure in dependent lung regions (near the vertebrae).
For these reasons, the absolute PL in the dependent lung
regions at end-expiration should be calculated as PEEP −
PES − 5 cmH2O, while in the nondependent lung regions at
end-inspiration, it should be calculated as PPLAT − PES +
5 cmH2O. Several trials targeting mechanical ventilation by
using PL have found no beneficial effects on outcome [45, 47].
However, none of them appropriately corrected for appropriate
absolute PL. Preliminary data regarding the use of transpul-
monary pressure to tailor ventilator settings are encourag-
ing, but further, adequately powered studies are warranted.
Therefore, although this technique represents an appealing
“precision medicine” approach to individualized mechanical
ventilation parameters, the routine use of transpulmonary pres-
sure is limited and should be reserved only for selected cases
(e.g. obese patients, to assess the impact of the chest wall;
patients in whom ventilatory pressures are too high to be
explained by other, easier methods). Indeed, the assessment of
transpulmonary pressure with continuousmonitoring of PES at
the bedside is often challenging because of the need to insert an
esophageal catheter connected to a computer running dedicated
software [43, 45, 47]. Furthermore, as explained elsewhere in
this review, other, more suitable, and accessible methods to
personalize mechanical ventilation in ARDS are available.

2.5 Mechanical power
Mechanical power (MP) is the product of mechanical en-
ergy and respiratory rate [48], also defined as the amount
of energy per unit of time. Lung damage can be directly
explained by using some parameters that are set on the ven-
tilator by the clinician (VT , ∆P, airflow, respiratory rate,
and PEEP). The mechanisms associated with these variables
alone or different combinations thereof cause direct damage to
epithelial/endothelial cells and extracellular matrix [48]. MP
calculation is based on the following formulas, according to
the type of ventilation that is applied:

MPV CV = 0.098 × VT × (PPEAK−
∆P

2
) × RR

MPPCV = 0.098 × VT × (∆P + PEEP ) × RR

where VCV is volume-controlled mode, PCV is pressure-

controlled mode [49, 50], and RR represents the respiratory
rate in breaths per minute. In general, these MP formulas are
based on the basic equation of motion, PRS = ERS × VT +

V ′
INSP ×RAW , which considers changes in pressure as well

as elastic and resistive components (V′
INSP is the inspiratory

flow and RAW is the airway resistance). The same equation
can be computed for the “absolute” level of respiratory system
energy as PRS = ERS × VT + V ′

INSP × RAW +

PEEP . However, to date, controversies remain regarding the
best equation to evaluate MP at bedside [51]. MP has been
associated with increased mortality and worse oxygenation
in ARDS and non-ARDS populations [52, 53], although in
another report this was true only if normalized to compliance as
well as to aerated tissue [54]. More studies are needed to better
understand the association between MP and survival in ARDS
patients. For this reason, although MP represents an appealing
and easily available method that integrates several ventilatory
parameter in a unique equation which can be calculated at the
bedside, the lack of literature confirming the impact of this
parameter on hard outcomes limits its routine use as a potential
target to individualize mechanical ventilation in ARDS [4].

3. Other ventilation modes

3.1 Airway pressure release ventilation and
time-controlled adaptive ventilation

Airway pressure release ventilation (APRV) is a ventilatory
strategy first developed by Downs et al. [55] for patients with
reduced compliance. This ventilatory mode uses a continuous
positive airway pressure combined with a partial and short
release phase for ventilation, allowing the patient to breathe
spontaneously. A high pressure (Phigh) around 20–30 cmH2O
is applied and maintained for a certain time (T1) during which
the patient can breathe spontaneously. At the end of T1, the
pressure decreases to low pressure (Plow) according to lung
elastic recoil. T2 is obtained with an expiratory flow around
25–50% of the maximum value. However, Phighand Plow
should be set according to the higher and lower inflection
points of the P/V loop [56]. The efficacy of APRV in ARDS
has been recently demonstrated in a meta-analysis of 6 clinical
trials and 375 patients, showing an improvement in oxygena-
tion with shorter ICU stay [57]. Regarding hemodynamic
stability, another meta-analysis found an increase in the mean
arterial pressure and reductions in peak pressure and 28-day
mortality [58]. APRV, compared to lung-protective venti-
lation, increased compliance and oxygenation and improved
hemodynamics, thus resulting in reduced mortality, duration
of MV, and ICU stay [59, 60]. The use of time-controlled
adaptive ventilation (TCAV) during APRV showed improve-
ment of lung recruitment, more homogeneous ventilation, and
reduction in alveolar strain and stress [61]. In experimental
ARDS, TCAV, compared to lung-protective MV, reduced lung
damage and inflammation [62], making this strategy a possible
valuable alternative to classic APRV. These two ventilatory
techniques are implemented for the management of patients
with ARDS for all the above-mentioned reasons. However,
when targeting patients whomight benefit from this techniques
to individualize therapy, several potential situations should be
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considered, including the fact that spontaneous breathing effort
can result in increased oxygen consumption by the respira-
tory muscles; that vigorous breathing efforts may increase the
transcapillary pressure gradient, enhancing pulmonary edema
formation; and large tidal volumes and transpulmonary pres-
sure swings can be achieved because APRV is also a type of
pressure-controlled ventilation, thus potentially contributing to
volutrauma [63].

3.2 High-frequency oscillatory ventilation
High-frequency oscillatory ventilation (HFOV) is a concep-
tually appealing method of MV to reduce VILI in ARDS
patients, using VT equal or lower than dead space (0.1–3
mL/kg) but respiratory rates >150 breaths/min or 3–15 Hz
and a bias flow of gas set at 5–60 L/min [64]. The equation
of Fredberg explains how alveolar ventilation is obtained with
HFOV: (f)x × (VT )

y , where x is between 0.5 and 1 and y
between 1.5 and 2.2, which can be written as follows: (f) ×
(VT )

2. Based on this equation, it can be noted that VT

has a greater influence than respiratory rate in determining
alveolar ventilation. HFOV maintains a continuous distending
pressure and facilitates elimination of carbon dioxide, mainly
by accelerating themolecular diffusion process [64]. In experi-
mental ARDS, HFOV reduced lung injury, hyaline membrane
formation, airway epithelial cell damage, and biomarkers of
inflammation (interleukin (IL)-1β, IL-6, IL-8, IL-10, trans-
forming growth factor and adhesion molecules, as well as
tumor necrosis factor (TNF)) when compared to conventional
MV [64, 65]. In ARDS patients, HFOV, when used as a
rescue therapy, improved oxygenation [66]. However, other
studies found it resulted in higher mortality rates in patients
whose oxygenation failed to improve [67], or a nonsignificant
trend towards reduced 30-day mortality when compared to
conventional MV [68]. In 2017, a meta-analysis by Meade
et al. [69] reported that HFOV increases mortality in pa-
tients with ARDS, but not in case of severe hypoxemia on
conventional MV. A previous Cochrane review concluded that
there is not enough evidence to demonstrate superiority of
HFOV in adult ARDS patients when compared with lung-
protective conventional MV, but benefits of HFOV were seen
regarding survival and treatment failure (i.e., refractory hy-
poxemia, hypercapnia, hypotension, or barotrauma) [70]. In
summary, the use of HFOV in adult ARDS remains con-
troversial, especially regarding survival outcomes. HFOV
can be considered as rescue therapy in ARDS if potential
harms (higher intrathoracic pressure, interference with right
ventricular preload, pneumothorax, displacement of the endo-
tracheal tube, airway obstruction from mucus plug, refractory
acidosis, cellular injury) and benefits (improved oxygenation,
reduced VILI, failed conventional ventilation, lower VT , lungs
inflation avoiding repeated opening and closing of alveoli) are
weighed carefully with respect to individual patient character-
istics and needs [71]. Patients who can benefit from HFOV
as a rescue strategy are those with severe ARDS whose lungs
cannot tolerate high tidal distending pressure.

4. Adjunctive therapies

4.1 Prone positioning
Prone positioning represents a rescue therapy in severe ARDS.
In ARDS lungs, dependent areas are commonly more perfused
than the nondependent due to gravitational gradient, resulting
in hypoxia associated with ventilation/perfusion mismatch.
Prone positioning allows a more homogenous distribution of
ventilation/perfusion with diminished intrapulmonary shunt
[72]. Nevertheless, some conflicting results were published
in the clinical setting regarding ARDS patient outcomes. The
prone-supine RCT found no differences in survival when com-
paring prone with supine positioning, but more complications
[73]; in contrast, the PROSEVA trial showed reducedmortality
in prone compared to supine groups, and similar rates of
complications [74]. A meta-analysis of RCTs confirmed the
benefits of reduced mortality using prone positioning [75].
Particularly, in a sub-analysis, mortality rate was further re-
duced when prone positioning was applied for more than 12
hours [76]. Finally, two recent meta-analyses supported the
use of prone positioning and venous-venous extracorporeal
membrane oxygenation (VV-ECMO) in adjunction to lung-
protective ventilation in ARDS patients, demonstrating sur-
vival benefits [77, 78]. Prone positioning has also become
one of the cornerstones of mechanical ventilation in COVID-
19 patients with ARDS, as briefly explained in the appropriate
section below “5. Mechanical ventilation in COVID-19”.

4.2 Recruitment maneuvers
Recruitmentmaneuvers (RMs) are considered part of the “open
lung approach”, reducing repeated opening and closing of
collapsed alveoli and intrapulmonary shunt, thus improving
oxygenation [79]. However, RMs may lead to VILI and
hemodynamic impairment. The ART trial reported that high-
pressure stepwise lung RMs (up to PPLAT of 50–60 cmH2O)
combined with higher PEEP titration increased patient mor-
tality [16], while the PHARLAP trial [17], assessing RMs up
to a PPLAT of 28 cmH2O, was interrupted as several patients
experienced hemodynamic issues. Meta-analyses of RCTs,
despite supporting the use of RMs in combination with PEEP
or alone, did not describe which type of RMs was performed
in each trial, thus leading to poor accuracy. RMs are usually
adopted in cases of severe hypoxemia, but there is no evidence
regarding their optimal frequency or exact timing. Some
studies report systematic application of RMs, while others
report the application of RMs when the lung is de-recruited,
as a rescue measure. Regardless, RMs appear to be safe if
used periodically (i.e., not systematically), since they improve
oxygenation and seem not to lead to barotrauma or hemody-
namic compromise [22, 80, 81]. Additionally, it is important
to identify lung recruitability at bedside to individualize the use
of RM strategies in ARDS patients. An approach which targets
at the need of the patient by assessing lung recruitability at the
bedside before applying potentially harmful maneuvers is sug-
gested. A potentially recruitable lung consists of some areas
of open alveoli and others of collapsed alveoli, which can be
opened, thus decreasing shunt, pulmonary vascular resistance,
and edema, as well as improving oxygenation. Conversely, a
potentially non-recruitable or poorly recruitable lung is mainly
constituted of already open alveoli, carrying a high risk of
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VILI from excessive stress and strain, increased dead space,
shunting, and potentially high pulmonary vascular resistances
[82]. Methods to assess lung recruitability have been explained
in paragraph 2.2 “Positive end-expiratory pressure”.

4.3 Sedation, analgesia and neuromuscular
blockers
In the acute phase, patients with severe ARDS remain deeply
sedated and require the use of neuromuscular blocking agents
(NMBAs) to improve gas exchange. On the other hand,
early active breathing has the advantage of reducing respira-
tory muscle wasting, improving oxygenation, and increasing
compliance [83]. Analgesia and sedation with or without
the use of NMBAs is challenging in patients with ARDS.
The primary objective of analgesia and sedation in patients
with ARDS is to provide safety and comfort, to help the
patient interact with the ventilator and the staff, to facilitate
critical interventions, and to promote physical and cognitive
recovery to minimize the risk of delirium and agitation [84].
Sedation and analgesia should be set according to individ-
ual patient requirements, without rigid adherence to a single
strategy—i.e., accepting short intervals of moderate sedation
to reduce patient-ventilator asynchronies and discomfort, oc-
casional deep sedation (especially in case of need for invasive
mechanical ventilation with high pressures and neuromus-
cular blockade), or mild sedation with adequate analgesia,
such as during ventilator weaning. In any case, sedation
and analgesia should be individualized to patient requirements
and ventilation needs [84]. Monitoring of sedation and pain
levels with validated tools (i.e., Richmond Agitation Sedation
Scale (RASS), Sedation Agitation Scale (SAS), Behavioral
Pain Scale (BPS), etcetera) should be encouraged. Analgesic
and sedative infusions should be continued unless NMBAs
are stopped [84]. It is important to distinguish which ARDS
patients will benefit from the use of NMBAs, including those
with higher The Acute Physiology and Chronic Health Evalua-
tion (APACHE) II score, alveolar-arterial oxygen gradient, and
PPLAT , or those who are critical and require rescue therapies
like VV-ECMOor prone positioning [85]. In 2010, Papazian et
al. [86] found that a strategy of early administration ofNMBAs
improved 90-day survival and liberation from MV without
increasing muscle weakness from disuse. In the ROSE trial,
which included patients withmoderate to severeARDS, no sig-
nificant differences in mortality were found between patients
who received an early and continuous infusion of NMBAs vs.
those who received usual care and lighter sedation [87]. A
recent meta-analysis excluding the ROSE trial concluded that
NMBAs did not reduce the overall risk of death at 28 days
and 90 days, while ICU mortality was significantly reduced
[88]. The reasons for excluding the ROSE trial were (1)
the use of different PEEP titration strategies and (2) different
degrees of sedation (light sedation compared to deep sedation
strategy used in the other trials) [88]. Considering the differing
results obtained from RCTs including severe ARDS patients,
NMBAs appear to improve oxygenation and reduce the risk of
barotrauma, but do not decrease mortality risk, ventilator-free
days, or duration of MV.

4.4 Vasodilators
Selective pulmonary vasodilators, like inhaled nitric oxide
(iNO), are an another rescue therapy for ARDS patients un-
responsive to conventional therapies [89]. iNO improves
oxygenation through a selective vasodilatation of capillary ves-
sels in well-aerated alveoli, thus reducing ventilation/perfusion
mismatch and pulmonary vascular resistance as well as in-
creasing right ventricular output [89]. However, a meta-
analysis of RCTs did not support routine use of iNO in ARDS,
since no significant changes in survival were observed and a
risk of renal dysfunction was detected [90]. As an alternative
to iNO, inhaled epoprostenol has been suggested. The advan-
tages of inhaled epoprostenol compared to iNO are (1) reduced
potential side effects, (2) easier administration, and (3) lower
costs. However, there are few studies regarding the use of
inhaled epoprostenol in ARDS targeting mortality as a primary
outcome [91].

4.5 Venous-venous (VV)-ECMO
VV-ECMO is often adopted as a rescue strategy for severe
ARDS patients. The risk of VILI is reduced as an ultra-
protective ventilatory strategy is provided [92]. The sug-
gested criteria for VV-ECMO initiation in ARDS are: (1)
mortality risk >50% and PaO2/FiO2 <150 with FiO2 >90%
and/or a Murray score of 2–3, an Age-Adjusted Oxygena-
tion Index (AOI) score of 60; (2) mortality risk ≥80% and
PaO2/FiO2 <100 with FiO2 >90%, and/or Murray score 3–4,
AOI score >80 or Acute Physiology of Stroke Score (APSS)
(Age, PaO2/FiO2, Plateau Pressure) of 8; (3) hypercapnia
despite protective mechanical ventilation and rescue therapies
(e.g. prone positioning, recruitment maneuver); (4) severe air
leak syndrome; (5) need for lung transplantation; or (6) acute
severe heart or pulmonary failure that is potentially reversible
but unresponsive to conventional management [93–95]. A
meta-analysis of 2 RCTs and 5 observational studies concluded
that ARDS patients undergoing VV-ECMO and MV exhibited
a significantly lower mortality rate than those receiving MV
alone at 30, 60, and 90 days [96]. However, a recent reanalysis
of the data presented by Munshi et al. [97] using both tra-
ditional and Bayesian models to estimate the treatment effect
concluded no certainty regarding the efficacy of VV-ECMO in
ARDS on mortality. Compared with conventional MV, VV-
ECMO showed lower 60-day, 90-day, and 1-year mortality in
patients with ARDS, as demonstrated by both conventional
and individual-patient-data meta-analyses [98, 99]. Hence,
the latest evidence does not clearly support the use of VV-
ECMO for patients who are critical and cannot obtain other
benefits from conventional therapies. Therefore, patients with
ARDS who might benefit from VV-ECMO are those needing
complete pulmonary support to allow adequate oxygenation
and carbon dioxide removal, while limiting the risk of VILI
due to conventional ventilator strategies. However, given
that VV-ECMO is commonly adopted as a rescue strategy,
the decision to start VV-ECMO is difficult to place into the
context of personalized ARDS therapy. The decision to initiate
ECMO should also weigh the patients’ possibility of recovery,
family expectations, odds of survival, potential life-threatening
complications, and ethical considerations [100].
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5. Mechanical ventilation in COVID-19

The coronavirus disease 2019 (COVID-19) pandemic has
called into question several cornerstones of MV in ARDS,
mainly because at the onset of the pandemic ARDS and
COVID-19 were considered very similar; thus, there was
an attempt to employ the same MV strategies for both
conditions. The main driver of MV strategies in COVID-19
ARDS is actually the identification of pathophysiological
differences and similarities between COVID-19 ARDS and
non-COVID-19 ARDS, although both are characterized by
severe refractory hypoxemia and high mortality [101]. Severe
COVID-19 and typical ARDS are usually characterized by
respiratory compromise and multiorgan failure. Biological
markers have been identified as exacerbating factors for
severe disease in both cases [102]. Particularly, variations in
the immune and inflammatory response, including cytokine
release (e.g. interleukin-6 and 10), endothelial dysfunction,
microthrombus formation with an altered coagulation cascade,
have led to the identification of several serum biomarkers
(lactate dehydrogenase, D-dimer, among others) able to
provide early detection of progression to severe disease,
although their potential association with outcomes is unclear
[103]. This concept has been previously raised in non-
COVID-19 ARDS, with the identification of sub-phenotypes
(i.e., hyperinflammatory and hypoinflammatory), which
may represent a shift toward a more targeted “precision
medicine” approach [104]. In COVID-19 ARDS, unlike in
typical ARDS, nondependent aerated regions show mostly
perfusion over ventilation, with a certain degree of hypoxic
vasoconstriction in the dependent lung regions that results
in a non-gravitational distribution of regional blood flow
[105]. The identification of COVID-19 phenotypes (1 or
L and 2 or H) through chest CT could be a valid strategy
to select patients who would benefit from early intubation
and those who would not [106]. In COVID-19 phenotype
1, lung compliance typically is not markedly affected,
whereas gas exchange and hypoxia deteriorate rapidly due
to microthrombosis, with increased wasted ventilation, and
reduced ventilation/perfusion mismatch, while lung weight
is lower [107]. On the other hand, in COVID-19 phenotype
2, lung weight is increased, with reduced compliance,
increased wasted ventilation, and true shunting, whereas
ventilation/perfusion mismatch is less compromised [106].
Indeed, COVID-19 patients receiving invasive MV show a
decrease in lung volume and increase in poorly aerated or
non-aerated lung tissue areas compared to patients receiving
noninvasive respiratory support (NIRS) [108].
Therefore, the use of NIRS as a first-line strategy should be

put within the context of COVID-19 phenotypes and consid-
ered especially for COVID-19 phenotype 1. In general, current
recommendations moved from an early intubation approach at
the onset of the pandemic to a more conservative one [109],
distinguishing between COVID-19 phenotypes 1 and 2 in
order to intubate early only those patients who clearly present
with COVID-19 phenotype 2 or deterioration of phenotype
1 after NIRS. The recognition of patients who are at higher
risk of NIRS failure is challenging [109] and should con-
sider possible patient self-inflicted lung injury (P-SILI). NIRS

methods include high-flow nasal oxygen (HFNO), noninvasive
continuous positive airway pressure (CPAP), and noninvasive
ventilation (NIV). An initial strategy using non-invasive CPAP
was found to reduce the risk of tracheal intubation or mortality
compared to conventional oxygen therapy, while this was
not confirmed for HFNO [110]. A brief period of awake
prone positioning during NIRS can also be considered before
moving forward to intubation [111]. In the presence of clinical
deterioration or if patients already present with phenotype
2 (or H) on admission, intubation and invasive mechanical
ventilation can be considered. This mode of ventilation should
be set using a low VT of 4–6 mL/kg of PBW, low plateau
pressure <28–30 cmH2O, and moderate levels of PEEP (10
to 15 cmH2O) according to individual patient response and
requirements [111]. When lung compliance is preserved and
areas of atelectasis are few, low to moderate rather than high
PEEP levels might be indicated [111]. Hence, a strategy for the
early phase (with predominance of low ventilation/perfusion
areas) would comprise higher oxygen fraction and moderate
levels of PEEP, while in the late stage (predominance of shunt),
higher PEEP levels (but not exceeding 15 cmH2O) might be
suggested, given that poor response to oxygen is expected
[111]. Regarding the use of prone positioning during invasive
mechanical ventilation in patients with COVID-19 ARDS,
there is no agreement in the literature as to which patients may
benefit from this strategy. In general, more severe patients
with COVID-19 phenotype 2 are considered eligible. Themain
rationale is that the improvement in oxygenation achieved with
prone positioning allows a more homogeneous distribution
of ventilation and perfusion, reducing the risk of VILI. This
improvement in oxygenation is often associated with redistri-
bution of perfusion (anti-gravitational as compared with non-
COVID-19 ARDS) rather than effective alveolar recruitment
in COVID-19 [28, 112]. Although prone positioning led to
an improvement in oxygenation, this improvement was not
always associated with better survival [113–115]. Moreover,
the identification of “responders” to prone positioning among
patients with COVID-19 is highly heterogeneous by definition
[113, 115, 116], due to such factors as the use of different
thresholds for defining an improvement in oxygenation. Some
studies also identified a higher mortality in “non-responders”
[114]. APRV and RMs could be considered in patients with
COVID-19 and ARDS who do not improve despite optimiza-
tion of mechanical ventilation. The use of VV-ECMO in
patients with COVID-19 ARDS should be considered indi-
vidually, based on a careful evaluation of risks, benefits, and
available resources (i.e., ECMO center, ICU beds and staff).
Indications for initiation of VV-ECMO in COVID-19 overlap
with those for non-COVID-19 ARDS. The main difference
between these two entities of ARDS is represented by the
constrained availability of resources within the context of a
pandemic, as patients with COVID-19 exhibit mortality rates
similar to those of historical VV-ECMO cohorts [117].

6. Summary

Mechanical ventilation in patients with ARDS has changed
markedly over the last decades. A recommended approach is
that of keeping VT , PPLAT , ∆P, and MP low. Several rescue
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therapies, including neuromuscular blocking agents, vasodila-
tors, prone positioning, RMs, and VV-ECMO, may be used in
severe ARDS. An individually tailored mechanical ventilation
strategy based on each patient’s characteristics might be the
cornerstone of future enhancement of MV in ARDS and may
represent a promising approach for respiratory diseases with
presentations like ARDS, such as COVID-19.
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