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Abstract
Acute respiratory distress syndrome (ARDS) is a critical illness characterized by a
severe hypoxemic respiratory failure, caused by an inflammatory response which
results in diffuse lung damage. Despite decades of research, the treatment of ARDS
remains supportive. However, in recent years, cell-based therapies have been the
subject of intensive ongoing research efforts, showing relevant therapeutic potential in
preclinical ARDS models. Among all the different cells that have been identified as
suitable candidates for use, mesenchymal stromal cells (MSCs) have been the most
attractive candidates and have generated significant interest. MSCs are multipotent
adult stem/stromal cells that can modulate the immune response and enhance repair
of damaged tissue in multiple in vivo models. Their promising effect seems to be not
primarily mediated by MSCs differentiation and engraftment but more by the paracrine
release of different soluble mediators and cellular components such as extracellular
vesicles (EVs). Preclinical experiments have provided encouraging evidence for the
therapeutic potential of MSCs, leading to the launch of several phase I and II clinical
trials that have shown safety of MSCs in ARDS, which became very common nowadays
due to the Coronavirus disease (COVID-19) pandemic. However, some translational
challenges have yet to be solved, such as the reproducibility of cell harvest, storage,
reconstitution, and administration of cells/cell-products, before the therapeutic potential
of stem cells therapies can be realized.
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1. Introduction

Acute respiratory distress syndrome (ARDS) constitutes a con-
dition of progressive acute hypoxic respiratory failure charac-
terized by the dysfunction of alveolar-capillary barrier and by
rapid onset of inflammation in the lungs, leading to diffuse
alveolar damage [1]. In 2012, a panel of experts developed
the Berlin definition for ARDS that comprised three severity
levels (mild, moderate and severe) based on degree of hypox-
emia that are associated with progressively increased mortality
[2]. ARDS can be caused by a number of clinical disorders,
predominantly bacterial and viral infection and/or sepsis, with
other common causes including aspiration of gastric contents
and major trauma, but it can be also triggered by less common
events as severe acute pancreatitis, shock, drug overdose or
devastating neurologic injury [3]. Recently, the Covid-19
pandemic added a new viral cause of ARDSwith a huge impact
on Intensive Care Units (ICUs) around the world [4, 5].
It is clear that ARDS is a complex clinical syndrome with

distinct clinicopathological characteristics [6]. The reported
incidence appears to vary widely, although this is likely due to
differences in clinical recognition of the syndrome, and vari-
able ICU bed availability [7]. Despite this, there is no doubt
that ARDS is common in critically ill patients and represents

one of the leading causes of death in intensive care units. It is
important to note that, despite decades of study on the patho-
genesis of ARDS, the transfer of this knowledge to discovering
new therapies for ARDS has been disappointing. Currently
treatment is still limited to assisted ventilation and other life
support techniques such as fluid management, antimicrobial
therapies and nutritional supplementation. Increases in sur-
vival rates in recent years are mainly related to improvements
in these life support techniques [8–11]. Unfortunately, at
present no effective pharmacological treatment is available for
the treatment of ARDS. The consequence is that mortality
remains unacceptably high, ranging from 35% in patients with
mild ARDS to 46% in cases of severe ARDS [7].

This situation highlights the need to explore new therapeutic
strategies for ARDS. In this regard, cell therapies have exhib-
ited promising therapeutic potential in preclinical and clinical
studies [12], but also they have a number of challenges to solve.
The advantage of cell therapies is that their effects are exerted
at different levels, from the regulation at molecular level to
the structural regeneration of tissue. This offers remarkable
therapeutic potential in conditions such as ARDS with a com-
plex pathogenesis in which acting on individual pathways
is often ineffective. Different cells [13] and cell products
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have been used as potential therapeutic agents, including em-
bryonic stem cells, induced pluripotent stem cells (iPSC),
Endothelial progenitor cells (EnPC) or epithelial Progenitor
cells (EpPC) stromal or mesenchymal stromal cells (MSC),
and also products released by the cells [14], as conditioned
media or extracellular vesicles [15], in particular exosomes.
The ethical issues associated with embryonic stem cells as well
as difficulties in obtaining and standardizing progenitor cells
led most researchers to focus on adult stem cells, especially
mesenchymal stem cells, which also have low immunogenicity
and high capacity for expansion.

2. Mesenchymal Stromal Cells

Of all the options, the cells that have probably generated
the most interest and in which there are the most studies
underway are the MSCs [16, 17]. These multipotent adult
stem cells can be obtained from the bone marrow, umbilical
cord, or peripheral blood and can be maintained without losing
their ability to differentiate into mesodermal lineages. In
addition, they have low immunogenicity and possess anti-
inflammatory, angiogenic, antifibrotic and immunomodula-
tory activities [18]. All these properties have potential to at-
tenuate ARDS severity and/or promote recovery and tissue re-
pair. Ideally, MSC administration may reprogram the immune
response, decrease inflammation, and promote regeneration of
damaged lung areas (Fig. 1). In addition, its antifibrotic poten-
tial could also prevent the appearance of foci of fibrosis that
would compromise the proper exchange of gases [19]. Initially
it was also considered that MSC grafting, differentiation and
multiplication potential could facilitate the reconstruction of
overly damaged tissue areas, but later it has been seen that
this effect is very limited [20]. Finally, it has been observed
that the therapeutic potential of MSC could be enhanced by
stimulating them prior to administration. Exposure to hypoxia,
lipopolysaccharide (LPS), different cytokine combinations and
other stressful stimuli trigger survival genetic programs that
strengthen the regenerative activity of MSCs [21].

2.1 Epithelial repair
Alveolar epithelial cell damage is one of the typical features of
ARDS. In cases of severe ARDS, the damage can affect both
type II and I alveolar cells, generating focal areas of destruction
and exposing the basement membrane. All this increases lung
permeability, triggers processes of fibrosis and coagulation
and, obviously, dramatically affects lung function [22, 23].
Consequently, for the treatment of ARDS, it is essential to
improve and accelerate the processes of epithelial regeneration
to restore the functionality of the alveolar wall. Without this
fundamental step, the effectiveness of supportive care, such as
assisted ventilation, is relatively limited.
MSC administration had been demonstrated to enhance the

regeneration of the pulmonary epithelium [24], via multiple
mechanisms, including Keratinocyte Growth Factor (KGF) se-
cretion [25], Matrix Metalloproteinase-8 (MMP-8) expression
[26], β-catenin activation [27], NF-κB inhibition [28] and the
induction of a reparative M2 phenotype in macrophages [29].
These effects are potentiated when MSCs are pre-treated with

stimulating inflammatory agents as LPS or cytokines [21].

2.2 Alveolar fluid clearance
Fluid accumulation inside the alveoli is a consequence of
the loss of endothelial integrity during ARDS and strongly
contributes to lung edema and hypoxemia [30]. Several studies
demonstrate that MSC treatments can enhance clearance of
alveolar fluid reducing the amount of lung water contents
in both in vivo and ex vivo models of lung injury [31, 32].
The mechanisms proposed includes the restoration of sodium
equilibrium by acting on the sodium channels in a mechanism
mediated by KGF [33] or by miRNA-34c [34]. Angiopoietin-
1 appears to be also involved in the protective mechanism of
MSC via stabilization of endothelial permeability [24].

2.3 Immune response modulation
MSCs have been reported to exert a number of effects in
both adaptive and innate immune system [35]. The release
of paracrine factors and extracellular vesicles modulate the
phenotype and/or function of macrophages, neutrophils, T
cells and B cells [29, 36–39]. Changes in the phenotype of
these cells results in additional release of anti-inflammatory
and immunosuppressive mediators, as Interleukin 10 (IL-10)
or prostaglandin-E2, that reduces lung damage associated with
the inflammatory response [40]. In particular, exposure of
MSCs to an inflammatory microenvironment causes changes
in the expression of genes that modulate the inflammatory re-
sponse and the activation of different lymphocyte populations
[41–43]. These effects of MSCs are of particular relevance
given the role of the immune response in the pathogenesis of
ARDS.

3. MSCs Engraftment

While engraftment and trans-differentiation of MSCs to re-
place damaged host tissue was initially considered an impor-
tant potential mechanisms of action, it is now known that
this is not the case. In fact, experimental data indicate that
less than 1% of the administered cells will end up grafting
into the damaged tissue [44, 45]. This amount is too small
to justify the observed protective effects. This fact does not
change the potential of MSC based therapies for controlling
the progression of ARDS but open the door to additional
treatments based on paracrine factors released by the MSCs.
This is why, in addition to the administration of MSCs, studies
have also been carried out to investigate the effect of treatment
with conditioned medium, secretome and, in particular, extra-
cellular vesicles (EVs) [33, 46–49].

4. MSC Secretome and EVs

The advantage of using elements of MSC secretome is that
they avoid some of the potential problems associated with
the use of whole MSCs as a therapy. This includes the
difference in therapeutic efficacy between different batches of
cells, the control of apoptosis and other ways of cell clearance
including phagocytosis by macrophages, the potential toxicity
of different agents required in the process of MSCs culture
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FIGURE 1. MSCs mechanisms for ARDS treatment. ROS: reactive oxygen species; NETs: neutrophil extracellular traps;
Th17: T helper 17; Treg cells: regulatory T cells; M1: M1 macrophage phenotype; M2: M2 macrophage phenotype; KGF:
keratinocyte growth factor; Ang-1: angiopoietin-1; AEC I: type I alveolar epithelial cells; AEC II: type II alveolar epithelial
cells; ENaC: epithelial sodium channel; MMP-8: matrix metalloproteinase-8; EVs: extracellular vesicles; MSCs: mesenchymal
stromal cells.

and preservation, the potential risk associated to the use of
heterologous cells and the logistical problems linked to the
use of cells in the clinical practice [50]. Although most of
these drawbacks can be controlled or have not been found to
be as significant as expected [51], the use of exosomes allows
them to be avoided while maintaining much of the therapeutic
potential of the cells themselves. In some ways exosomes
can be seen as a delivery system for regenerative and anti-
inflammatory proteins and microRNAs to damaged epithelial
cells or, alternatively, activated inflammatory cells in lung.
However, some challenges have yet to be solved. For

example, as with MSCs, there are also differences in the
content, and therefore in the therapeutic activity, between the
different batches of exosomes. Storage and reconstitution have
been also challenging since exosomes could form aggregates
during the process of freezing and thawing [52]. The standard-
ization of methods for determining the therapeutic potential of
exosomes in a homogeneous manner is also proving difficult
to establish [53].

5. Route of Administration

5.1 MSC routes of Delivery
The optimal route of administration for MSCs remains under
debate. It can be delivered either by intravenous or intratra-
cheal routes, and for exosomes or paracrine mediators, deliv-

ered as an aerosol using a nebulizer. Intravenous use currently
remains the preferred route due to its greater feasibility in
clinical practice. However, this way makes it difficult to
control the amount of MSCs that effectively reach the lung and
are retained there [54]. Depending on the patient’s condition,
the administered cells may be retained in different organs. In
experimental studies it has been suggested that in non-injured
animals, large amounts of administered cells are trapped in
the liver, spleen or kidney while in injured animals, cells
accumulate in the lungs [55, 56]. This adds a degree of
uncertainty to the dose of cells that will actually reach the
lung, particularly where there are multiple sites of injury, e.g.,
multiple organ injury. The effects that cells retained in other
tissues and organs have on these tissues is also uncertain, which
adds to the complexity of using this therapy.
The alternative is direct administration into the lung.

The intratracheal route, based on the administration of
fluid-suspended cells using an intratracheal tube, has been
extensively used in experimental models [57], but has many
disadvantages in clinical application. It is an invasive delivery
approach, associated with an irregular distribution of cells
and, above all, adding fluid to lungs which, given their already
increased water content, might worsen the pre-existing
pathology. The alternative is the use of aerosols or nebulizers,
that convert the liquid into aerosols that can be easily inhaled.
This approach offers higher efficiency than the alternative
ways but there are differences depending on the type of
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TABLE 1. Clinical trials: registered MSC-based treatment in Covid-19-associated ARDS.

Identifier (status) Clinical
trial phase Cell source Dosage Route Enrolled

number Primary outcomes

NCT04525378 (Recruiting) 1 BM-MSCs 2.5, 5, 10 × 107
cells/kg

I.V 20 Intrahospital mortality
at day 28

NCT04456361(Active) 1 WJ-MSCs 1 × 108 cells/kg I.V 9 Oxygen saturation
CHICTR2000029990
(Recruiting) 1–2 BM-MSCs 1 × 106 cells/kg I.V 60 Oxygen saturation

NCT04355728 (Recruiting) 1–2 UC-MSCs 1 × 108 cells/kg
(2 times)

I.V 24 Adverse events

NCT03042143 (Active) 1–2 UC-MSCs 1, 2, 4 × 108
cells/kg I.V 75 Oxygenation index,

adverse events

NCT04390139 (Recruiting) 1–2 WJ-MSCs 1 × 106 cells/kg I.V 30 All-cause mortality at
day 28

NCT04416139 (Recruiting) 2 UC-MSCs 1 × 106 cells/kg I.V 10

PaO2/FiO2 ratio, heart
and respiratory rate,
changes in body
temperature

NCT04865107 (Recruiting) 2 UC-MSCs 2, 7 × 108 cells/kg I.V 54
Number of days free
of oxygen mechanical
ventilation at Day 28

NCT04366063 (Recruiting) 2–3 BM-MSCs 1 × 108 cells/kg
(2 times)

I.V 80 Adverse events, blood
oxygen saturation

NCT04371393 (Recruiting) 3 BM-MSCs 2 × 106 cells/kg
(2 times)

I.V 300 All-cause mortality at
day 30

BM-MSCs: bone marrow-derived mesenchymal stem cells; I.V.: intravenous; WJ-MSCs: Wharton-Jelly mesenchymal stromal
cells; UC-MSCs: umbilical cord-derived mesenchymal stem cells.

nebulizer used and there is still much research that need to
be done before cell product nebulization become routine in
clinical practice. Specifically, the administration of intact
cells by nebulizers needs to be optimized, although there is
great potential for administering MSCs-derived EVs or the
whole secretome this way [12].

5.2 Clinical Trials

Preclinical experiments have provided encouraging evidence
for the therapeutic potential of MSCs in a variety of diseases,
including ARDS [18]. This led to the launch of several phase
I and II clinical trials which have demonstrated the safety
and feasibility of these treatments [58–60]. Relevant issues
that remain to be determined include the need to establish the
appropriate dose of cells administered, and the most effective
dose regimen. Lower doses could be ineffective while the
administration of an excessive number of cells could result in
complications associated to thromboembolic risk. It should be
noted that the selected route of administration is in almost all
cases intravenous. Only in a few Covid-19 trials the inhaled
route of administration has been selected [61], showing that,
despite its advantages, the aerosolized and nebulized routes
require additional improvements before moving on to a clinical
application.

5.3 COVID-19-related ARDS

The number of studies increased dramatically during 2020 due
to the arrival of the Covid-19 pandemic. In just one year, a
substantial number of phase I and II clinical trials focused on
controlling Covid-19-associated ARDS were initiated, mostly
in China [62] (Table 1). Predictably, there is a huge variation
in the origin of MSCs, the number of patients recruited, or
the administration protocols. There are also a number of
studies administering MSCs-derived EVs [63]. Despite these
differences, these studies consistently demonstrated that the
administration of MSCs is, as expected, safe and. In some
studies, patients have shown improvement in some clinical
parameters. For instance, in a phase IIa clinical trial conducted
in the USA, in which patients received a high dose level of allo-
geneic BoneMarrow-MSC (BM-MSC) (10× 106 cells/kg), no
predefinedMSC-related haemodynamic or respiratory adverse
effects were observed. Besides, infusioned patients showed
an improvement in the oxygenation index and a reduced level
of Angiopoietin 2 (ANG-2) in plasma, demonstrating that the
MSC administration improved endothelial injury [64].

One of the factors that facilitated the application of MSCs
in therapies for Covid-19-ARDS is the fact that these cells
are highly resistant to Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) infection, as they do not express
either angiotensin-converting enzyme 2 (ACE2) or transmem-
brane protease serine subtype 2 (TMPRSS2) on its surface
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[65]. Importantly, this low expression is observed also in
inflammatory situations [66].

6. Conclusions

The development of new and effective therapies for ARDS
is a key objective of biomedical research and the therapies
based on MSCs are among the approaches with the greatest
potential. The potential suggested by preclinical studies has
been extended in clinical studies which have shown that, in the
treatment of ARDS, MSCs were safe and well tolerated. This
impression has been reinforced by the large number of studies
initiated in response to the Covid-19 pandemic. However,
mechanistic studies will still be needed to fully understand the
mechanisms of action so that these therapies can be optimized.
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