
This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).
Signa Vitae 2022 vol.18(6), 17-26 ©2022 The Author(s). Published by MRE Press. http://www.signavitae.com/

Submitted: 09 February, 2022 Accepted: 29 March, 2022 Published: 08 November, 2022 DOI:10.22514/sv.2022.069

S Y S T EMAT I C R E V I EW

Artificial intelligence for the triage of COVID-19 patients
at the emergency department: a systematic review
Pablo Redruello-Guerrero1, Carmen Jiménez-Gutiérrez2,
Antonio Jesús Láinez Ramos-Bossini3,*, Paula María Jiménez-Gutiérrez4,
Mario Rivera-Izquierdo5,6, José Manuel Benítez Sánchez7

1Faculty of Medicine, University of
Granada, 18016 Granada, Spain
2Department of Nursing, University of
Granada, 18016 Granada, Spain
3Department of Radiology, Virgen de las
Nieves University Hospital, 18016
Granada, Spain
4Service of Anesthesiology,
Resuscitation and Pain Therapeutics,
Hospital Universitario Virgen de las
Nieves, 18014 Granada, Spain
5Service of Preventive Medicine and
Public Health, Hospital Universitario
Clínico San Cecilio, 18016 Granada,
Spain
6Department of Preventive Medicine
and Public Health, University of
Granada, 18016 Granada, Spain
7Department of Computer Science and
Artificial Intelligence, E.T.S. Ingenieria
Informática, University of Granada,
18071 Granada, Spain

*Correspondence
ajbossini@ugr.es
(Antonio Jesús Láinez Ramos-Bossini)

Abstract
The aim of this article is to systematically analyze the available literature on the efficacy
and validity of artificial intelligence (AI) applied to medical imaging techniques in
the triage of patients with suspected or confirmed coronavirus disease 2019 (COVID-
19) in Emergency Departments (EDs). A systematic review following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses guidelines was conducted.
Medline, Web of Science, and Scopus were searched to identify observational studies
evaluating the efficacy of AI methods in the diagnosis and prognosis of COVID-19
using medical imaging. The main characteristics of the selected studies were extracted
by two independent researchers and were formally assessed in terms of methodological
quality using the Newcastle-Ottawa scale. A total of 11 studies, including 14,499
patients, met inclusion criteria. The quality of the studies was medium to high.
Overall, the diagnostic yield of the AI techniques compared to a gold standard was
high, with sensitivity and specificity values ranging from 79% to 98% and from 70%
to 93%, respectively. The methodological approaches and imaging datasets were
highly heterogeneous among studies. In conclusion, AI methods significantly boost
the diagnostic yield of medical imaging in the triage of COVID-19 patients in the ED.
However, there are significant limitations that should be overcome in future studies,
particularly regarding the heterogeneity and limited amount of available data to train AI
models.
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1. Introduction

To date, more than 450 million cases and 6 million deaths
have been confirmed during the COVID-19 pandemic world-
wide [1]. The high contagiousness, multiple reservoirs, and
insufficient preventive resources, among other factors, led to
confinement regulations inmost countries during the first wave
of the pandemic [2–4]. From a clinical perspective, the pre-
senting symptoms of the disease are widely varied, including
respiratory symptoms, fatigue [5] or neurological symptoms
[6, 7], and more uncommon signs like pneumoperitoneum
[8, 9], among an endless list of potential manifestations. In
many cases, these symptoms overlap with other clinical en-
tities, particularly when respiratory symptoms predominate.
Such clinical variability and non-specificity of symptomsmake
the clinical diagnosis of COVID-19 fairly complicated at the
Emergency Department (ED).

On the other hand, early diagnosis is associated with better
outcomes. Patients suffering from COVID-19 showed high

mortality and hospitalization rates since the beginning of the
pandemic [10]. Several risk factors have been reported as
predictors of poor outcomes, such as the elderly, prognos-
tic scales [10, 11], different treatment strategies [12–14], or
even lifestyle factors [15], but inconsistencies in defining risk
profiles of patients complicate decision-making in ED triage
[16, 17]. Apart from in-hospital prognosis, Long-COVID
perpetuates the symptomatology and generates medium- and
long-term sequelae [18, 19], which in turn increase the rate
of readmission of patients to EDs, especially those living in
long-term care facilities [20]. It should be noted that the
pandemic situation has significantly increased stress, anxiety,
and depressive symptoms in healthcare workers [21]. Par-
ticularly, the EDs were overwhelmed by excessive demand,
which saturated EDs since the beginning of the pandemic [10,
20, 22–24]. Considering the importance of early and accurate
diagnosis in COVID-19 patient outcomes, fast and accurate
identification of cases might have an invaluable impact in
healthcare.
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To provide solutions to some of the problems detected in
clinical practice during the pandemic, several tools have been
developed to assess and improve the triaging systems in EDs,
increase diagnostic accuracy, early identification of cases and
support healthcare workers. Artificial Intelligence (AI)-based
techniques, especially deep learning (DL), have demonstrated
great utility when combined with other parameters such as
laboratory workup tests [25]. Specifically, DL applied to
diagnostic imaging has been reported as an efficient alternative
diagnostic tool in different medical specialties that take advan-
tage of medical images, such as histological analysis [26] or
radiology [27], and in a wide spectrum of diseases, including
COVID-19 [28]. In fact, DL techniques have been applied
to improve COVID-19 detection on chest radiographs (CXR)
[29–31] and computed tomography (CT) [32]. However, the
training and implementation of AI models require solving fre-
quent limitations encountered in this setting, including but not
limited to unbalanced datasets, non-labeled or unrepresentative
images, inter-institutional heterogeneity in imaging equipment
and quality of CT and CXR images, and differences in the
ground truth used to train and validate AI results.
Some of the most outstanding approaches in this context

include the use of fused deep features based classification
framework with optimized multi-layer perceptron structures
[33] or shrunken features [34]. In addition, data augmentation
and transfer learning techniques allow solving common prob-
lems encountered in this setting, as is the case with unbalanced
dataset images. Despite there is wide variety of AI algorithms,
the results are difficult to compare due to high heterogeneity
in terms of methodological approaches and study designs [35].
Accordingly, it is necessary to determine the effectiveness
and limitations of different AI techniques available in specific
clinical scenarios. As mentioned above, one context of special
scientific interest is the triage of patients in the ED, specifically
concerning imaging techniques, which are performed routinely
in this setting and provide data that can be exploited by AI
systems. Therefore, this systematic review aims to analyze the
efficacy of AI techniques applied to imaging techniques in the
triage of patients with suspected COVID-19.

2. Methods

2.1 Study design and search strategy
A systematic review was conducted following international
standards. The report of the results followed the recom-
mendations of PRISMA (Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analysis) statement [36]. The
protocol was prospectively registered in PROSPERO (code:
CRD42021240732) [37]. The development of this study in-
cluded professionals from medical imaging (radiologists), ex-
perts in AI, physicians with experience in the management of
critically ill patients, and research methodologists.
Medline, Web of Science Core Collection, and Scopus

were used to collect relevant information from inception to
30 January 2022. The following Medical Subject Headings
(MeSH) terms were combined in each database as appropriate:
“SARS-CoV-2”, “COVID 19”, “Coronavirus”, “pandemic”,
“emergency department”, “emergency room”, “artificial

intelligence”, “machine learning”, “deep learning”, “triage”,
“early screening”, “diagnosis”, “prognosis”, “mortality”, and
“severity”. The search was conducted by two researchers
independently.

2.2 Selection of studies
Since the aim of this systematic review is to analyze stud-
ies exploring AI techniques in the triage of patients at the
ED, inclusion criteria covered observational original research
(both cross-sectional and longitudinal) studies published in
peer-reviewed scientific journals. Language was restricted to
English or Spanish. We included all algorithms developed
through AI applied to medical imaging in hospital EDs. Medi-
cal imaging examinations included chest radiography (antero-
posterior and posteroanterior), chest CT and lung ultrasound.
Different study designs that were non-relevant to our purpose
were excluded from analyses (e.g., case studies, letters to
the editor, reviews, editorials, or commentaries). Studies
conducted in samples obtained in hospital services different
from the ED were also excluded.
The studies that reported data on diagnostic accuracy, sever-

ity, or prognosis of COVID-19 comparing AI with ordinary
triage for radiological imaging were identified. First, titles
and abstracts were read and selected by three independent
reviewers. Second, eligible criteria were assessed, and full-
text reading was conducted for the selected documents. Incon-
sistencies or disagreements were solved by consensus with a
third experienced researcher.

2.3 Quality assessment and data extraction
Data were collected using specific datasheets. The relevant
information included authors, year of publication, study de-
sign, country, sample size, AI methodology, type of imaging
modality, sensitivity, specificity, and the presence of conflicts
of interest.
Quality assessment was performed using the nine-star

Newcastle-Ottawa scale (NOS) [38] by two independent
researchers. The risk of bias was assessed concerning
selection, comparability, and outcomes. High quality (low
risk of bias) was considered for studies scoring 8 or 9 points;
medium quality (medium risk of bias) for studies scoring 6 or
7 points; and low quality (high risk of bias) for studies scoring
5 points or less. Discrepancies were solved after consensus
with a third experienced researcher.

3. Results

Fig. 1 summarizes the selection process of the search. A total
of 204 studies were screened. After removing duplicates (n =
59) and studies with a design or scope different from inclusion
criteria (n = 86), a full-text assessment was conducted. A
total of 24 studies were excluded for not using AI at triage
for COVID-19 patients, and 3 studies were excluded for using
radiological databases instead of diagnostic imaging at the ED.
Finally, 21 studies did not meet inclusion criteria since they
reported outcomes onAI techniques applied to conditions other
than COVID-19. Therefore, 11 studies were included in this
systematic review [39–49].
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FIGURE 1. Flow diagram of the selection process for the studies included in this systematic review, according to
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [36]. COVID-19, coronavirus
disease 2019; AI, artificial intelligence.

All selected documents were longitudinal cohort studies, 7
of them prospective [39–41, 44, 46, 48, 49] and 4 retrospective
[42, 43, 45, 47]. Only one studywas conducted in amulticenter
cohort [47].

3.1 Quality assessment

The quality of the studies according to the 9-point NOS is
illustrated in Fig. 2. Overall, none of the selected studies
showed a high risk of bias. Only three studies were classified
as medium quality (6–7 points) [42, 45, 47]. The remaining
eight studies (72.7%) were judged to be of low risk of bias (8–
9 points). The mean quality score of all the studies we included
was 7.45. Overall, patient selection and comparability between
assessment groups were the assessment points with the lowest
reported scores. All studies classified as medium quality
showed potential conflicts of interest.

3.2 Characteristics of the included studies

The 11 included studies gathered a total of 14,999 participants,
45.5% of them in the Americas (including North and South
America), and the rest (55.5%) in Europe. The most frequently
used diagnostic imaging techniques were chest radiography
(63.6%), chest CT (18.2%), and lung ultrasound (9.1%). The
gold standard for comparison of all studies was experienced
radiologists who agreed between two [42, 43, 46, 48] or more
[45, 47]. Some severity scoring scales already described for
COVID-19 were employed [40, 41, 44]. Comorbidities were
described in only 54.5%of the included patients [39, 40, 42, 43,
46, 47]. Chronic obstructive pulmonary disease was present in
four of the studies [40, 42, 43, 46]. The definitive diagnostic
test was positivity for reverse transcription polymerase chain
reaction (RT-PCR) analysis which is considered to be an estab-
lished diagnostic criterion for COVID-19 [10]. According to
data provided by international morbidity and mortality registry
bodies [1] the case fatality rates of COVID-19 infection were
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FIGURE 2. Quality of the studies included in this review according to the Newcastle-Ottawa scale [38]. For each
individual study, the risk of bias was classified into low, medium, or high risk for selection, comparability and outcome.

considerable. They ranged from 8.2% [40] to 26% [47],
although the approximate median rate was around 18% in the
studies included in this systematic review.
All included studies analyzed the receiver operating char-

acteristic (ROC) curve for the training, validation, and test
models in the ED. The only study that did not analyze the ROC
area under the curve (AUC) was the work by Li et al. [45], in
which the analysis was performed using Pearson’s correlation
between the data obtained by radiologists of each participating
hospital and the data obtained through the AI models applied
to chest radiographs.
The AUC values of the different models showed large vari-

ations, with training model AUC values of 0.97–0.98 as in the
Random Forest model reported by Garrafa et al. [41] to the
mortality prediction AUC value of 0.66 obtained in Qure.ai
[46]. However, the models with the highest performance were
proposed by La Salvia et al. [44] as ResNet18 with a training
curve of 99.70± 0.01, a validation curve of 99.78± 0.20, and a
test curve around 97.72± 0.63; and the ResNet50 model, with
a training curve close to 99.95 ± 0.01, a validation curve of
99.81 ± 0.18 and a test curve close to 99.91 ± 0.07. Butler et
a l. [40] stratified the AUC according to the severity of patients
assessed by CheXNet-Cov19. In those patients admitted to an
intensive care unit (ICU) the AUC was lower than in the other
strata (0.67) possibly due to the supine position of the CXR.
In contrast to what has been described by other authors [46]
where their proposed model has a higher AUC in critically ill
patients compared to the control group. Therefore, the efficacy
in the diagnosis of critically ill patients may be higher with the
use of Qure.ai than with CheXNet-Cov19. The combination
of clinical parameters optimised the model proposed by Jiao
et al. [42], where the AUC went from a validation range of
0.753 to 0.792. This was also described in the Swedish study
[49] where the combination of CT imaging parameters together
with sociodemographic and laboratory variables increased the
AUC to 0.91.
As additional results, data on mortality, sensitivity, and

specificity were also analyzed. In general, mortality rates
ranged from 8–10% [40, 42] to approximately 20% [41, 46,
48], although Schiaffino et al. [47] reported a higher mortality
percentage (26%). Regarding the validity parameters of diag-
nostic tests, the following results were found: the reported sen-
sitivity of the Qure.ai system [46] was high (76.6%), although
it was lower than the diagnostic sensitivity of the control by
two radiologists using the Radiographic Assessment of Lung
Edema (RALE) score (86.6.%); the DL model ResNet18 [44]
obtained a sensitivity in training, validation, and test of 96.1%,
97.0%, 97.4%, respectively; the DL model ResNet50 [44]
showed a sensitivity in training close to 97.2%, in validation
around 97.5% and in test 98.2%; the DL model proposed by
Jiao et al. [42] showed a specificity of 85.3% in training and
70.1% in test validation, and a sensitivity of 73.8% and 72.8%,
respectively; another model developed by Kwon et al. [43]
showed a sensitivity of 82% in predicting patients requiring
mechanical ventilation and 78% for patient mortality; the
specificity in training of the model used by Weikert et al. [49]
was 81.8% and 6 points lower in model validation, with similar
values for sensitivity (80.0% and 74.2%, respectively); the BS-
EWM machine learning model [41] showed specificity and
sensitivity values of 92% and 93% in training, 75% and 82%
in validation, and 73% in test; finally, the CheXNet-Cov19
model [40] reported a specificity close to 76% and a sensitivity
close to 70%. It is remarkable that eight of the eleven studies
included have received funding, two do not indicate whether or
not they have received funding, and only one reports not having
received funding. This highlights the challenge of this situation
that has mobilised the global economy for efficient diagnosis,
treatment and prevention worldwide. Table 1 summarises the
main characteristics of all studies included in this review.
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TABLE 1. Main characteristics of the studies included.
Study, Year Country Sample

Size
Design Diagnostic

imaging
Type of Artificial

Intelligence
Main results Conflicts

of Interest
Total NOS
Score

Bartolucci et
al., 2021

Italy 115 Prospective Chest CT Machine learning
ROC AUC for Hybrid radiological model:

—Training: 0.87 (0.77–0.97)
—Validation: 0.82 (0.73–0.97)

No 8

Butler et al.,
2021

USA 3.571 Prospective CXR CheXNet based
deep learning
model, namely
CheXNet-Cov19

ROC AUC for CheXNet-Cov19
using CXR only:

—COVID-19: 0.71 (0.63–0.80)
—ARDS: 0.74 (0.66–0.82)
—ICU: 0.67 (0.58–0.75)
—Death: 0.76 (0.68–0.84)

No 8

Garrafa et al.,
2021

Italy 2.782 Prospective CXR (Brescia
chest X-ray)

Machine learning
model

(BS-EWM)

ROC AUC for Random Forest:
—Training: 0.97 (0.97–0.98)
—Validation: 0.83 (0.80–0.87)

—Test: 0.78 (0.73–0.84)
ROC AUC for GBM:

—Training: 0.88 (0.86–0.89)
—Validation: 0.84 (0.80–0.88)

—Test: 0.78 (0.73–0.83)
ROC AUC for Logistic regression:

—Training: 0.84 (0.82–0.86)
—Validation: 0.83 (0.79–0.87)

—Test: 0.52 (0.44–0.60)

No 8

Jiao et al.,
2021

USA 1.834 Retrospective CXR Deep learning

ROC AUC for image-based model:
—Training: 0.803 (0.773–0.817)
—Validation: 0.753 (0.746–0.772)
ROC AUC for image and clinical

data combined model:
—Training: 0.846 (0.815–0.852)
—Validation: 0.792 (0.780–0.803)

Yes 6

Kwon et al.,
2020

USA 499 Retrospective CXR Deep learning

ROC AUC for:
—CXR severity score: 0.80 (0.73–0.88)

—Admission: 0.76 (0.68–0.84)
—Intubation: 0.66 (0.56–0.75)
—Death: 0.59 (0.49–0.69)

No 8
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Study, Year Country Sample

Size
Design Diagnostic

imaging
Type of Artificial

Intelligence
Main results Conflicts of

Interest
Total NOS
Score

La Salvia et
al., 2021

Italy 450 Prospective Lung
ultrasound

Deep learning
(ResNet18 and
ResNet50

architectures)

ROC AUC ResNet18:
—Training: 99.70 ± 0.01
—Validation: 99.78 ± 0.20

—Test: 97.72 ± 0.63
ROC AUC ResNet50:

—Training: 99.95 ± 0.01
—Validation: 99.81 ± 0.18

—Test: 99.91 ± 0.07

No 8

Li et al., 2020 USA,
Brazil

591 Retrospective CXR Convolutional
Siamese neural
network-based

model, PXS Score
Base Model

r = 0.89. p < 0.001 Yes 6

Mushtaq et
al., 2021

Italy 697 Prospective CXR Deep learning (qXR
v2.1 c2, Qure.ai
Technologies)

ROC AUC for mortality:
—Qure.ai: 0.66
—RALE: 0.67

ROC AUC COVID-19 for critical care:
—Qure.ai: 0.76
—RALE: 0.75

No 8

Schiaffino et
al., 2021

Italy 897 Retrospective
(multicenter)

Chest CT Machine Learning
ROC AUC:

—Training/Validation: 0.871
—Test: 0.844

Yes 6

Shamout et
al., 2021

USA 2.943 Prospective CXR Deep convolutional
neural network

model

ROC AUC: 0.808 (95% CI, 0.746–0.866) No 8

Weikert et al.,
2021

Switzerland120 Prospective Chest CT Deep learning

ROC AUC for CT metrics only:
—Training: 0.88 (0.79–0.97)
—Validation: 0.75 (0.47–1.00)

—Test: Unknown ROC AUC for Pulmonary
CT metrics and demographics:
—Training: 0.84 (0.75–0.94)
—Validation: 0.71 (0.39–1.00)

—Test: 0.77 (0.66–0.88)
ROC AUC for combined parameters:

—Training: 0.91 (0.85–0.98)
—Validation: 0.75 (0.48–1.00)

—Test: Unknown

Yes 8

AUC, Area Under the Curve; CXR, Chest Radiographies; CT, Computerized Tomography; GBM, Gradient Boosting Machine; r, Pearson correlation coefficient; RALE, Radiographic
Assessment of Lung Edema; ROC, Receiver Operating Characteristic; USA, United States of America. NOS, Newcastle-Ottawa Scale; PXS, Pulmonary X-ray Severity; qXR, Quantitative
X-ray Score; COVID, Coronavirus Disease 2019; ARDS, Adult Respiratory Distress Syndrome; ICU, Intensive Care Unit.
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4. Discussion

In this systematic review gathering observational evidence
regarding the utility of AI techniques on diagnostic imaging
of COVID-19 in EDs, we included 11 studies with almost
15,000 patients. The ROC AUC value was the most common
measurement reported across studies, showing diagnostic and
prognostic yield values over 99% inmost cases. The validity of
the evaluated techniques compared to a gold standard showed a
sensitivity ranging from 79% to 98% and a specificity ranging
from 70% to 93%, depending on the technique. Overall,
our study shows the potential usefulness of AI techniques in
terms of both diagnostic accuracy and prognostic evaluation
of COVID-19 cases. Nevertheless, the variability in terms of
techniques and observed results creates difficulties in selecting
which AI model could provide better results if implemented
in real-world practice. Therefore, it is worth discussing some
details, particularly regarding radiological image processing
and the AI models applied.
With regard to radiological image acquisition and process-

ing, three different radiological techniques were used in the
studies analyzed in this review, including chest radiographs,
chest CT studies, and lung ultrasound images. In addition, var-
ious image datasets for each imaging modality were selected,
increasing heterogeneity. In general, image pre-processing
of chest radiographs was performed by normalizing the pixel
values of each image and rescaling the image from the center
to fit the AI model used. It should be noted that, in radio-
logical practice, technical acquisition problems may arise due
to factors such as inadequate patient positioning, breathing
difficulties, or interposition of tissues over the lungs. Con-
versely to other imagingmodalities, in chest radiography, these
limitations are a clear constraint for the objective evaluation of
the lung parenchyma in the images obtained, which often leads
to both false positive and negative conclusions. In other words,
the intrinsic sensitivity and specificity of chest radiography
are limited, and having an optimal image acquisition is of
the essence to appropriately train DL models. To obtain the
‘ground truth’ for each imaging exam, experienced radiologists
scored the chest radiographs using different scales such as
RALE [50], modified RALE (mRALE) [45, 50], the Brescia
score [41, 51], or methods proposed by other authors such
as Toussie et al. [52]. These scoring systems are based on
the degree of lung opacity (1 point for opaque regions and
0 points for healthy regions) and the distribution of these
areas (perihilar, upper, middle or lower lobe), which add up,
enabling an overall score for each radiograph. Of note, some
studies combined chest radiographs with clinical or laboratory
data covering a wide range of symptoms and signs to improve
diagnostic efficacy [40–42, 46, 49]. This could overcome some
of the limitations previously mentioned, not only because of
the use of more sources of information but also because of the
objective validity of these sources, particularly in the case of
laboratory parameters.
In the case of CT images, a more in-depth analysis of the

lung parenchyma and mediastinal nodes by radiologists was
possible due to the advantages of this technique compared to
CXR (e.g., multiplanar capability, higher spatial resolution).
Similar to the previous case, an overall score was given to

each imaging exam based on different scales that considered
the extension and distribution of lung opacities [53]. Regard-
ing acquisition protocols, CT images were reconstructed with
slice thicknesses ranging from 0.6 to 1 mm that allowed a
“soft tissue” reconstruction for the subsequent application of
tracking algorithms [39, 47, 49]. For the segmentation of lung
areas, “Region Growing” algorithms were used, allowing the
definition of intervals with air-like (i.e., lung) or slightly lower
densities, including thresholds from -700 Hounsfield Units
(HU)to -250 UH for ground-glass opacity patterns. Due to the
higher resolution of CT equipment compared to conventional
radiography, these intervals allow a more objective detection
of lung opacities. Interestingly, quantitative analysis of imag-
ing textures using radiomics techniques such as RadAR was
also performed in some cases, with interesting results [54].
Lung ultrasound images were obtained using convex probes

with frequencies ranging between 5 and 12 MHz, allowing an
imaging depth of up to 10 cm to reach the pleural lines and the
lung under study. The score assigned to each image is based on
a modification of the scores byMongoni et al. [55] and Soldati
et al. [56] proposed by La Salvia et al. [44]. The frames that
best represented the lung pattern being assessed were extracted
from each ultrasound image and were subsequently used to
train AI models. It should be noted that ultrasound is a highly
operator-dependent imaging technique, thus image quality is
generally limited compared to other imaging modalities such
as CT, and the heterogeneity among studies is higher.
Concerning the specific AI models used in the studies an-

alyzed in this systematic review, several methodological as-
pects need to be highlighted considering their variability. For
instance, to develop the Qure.ai model [46], DL systems based
on convolutional neural networks were used to define in-
dividual detection blocks for abnormalities in the processed
images after reviewing the areas of greatest interest such as the
cardiac silhouette, costodiaphragmatic angles or hilar areas,
and detection of nodules, cavitation, fibrosis or opacities. The
COVID-Globally-Aware Multiple Instance Classifier (GMIC)
model [48] was designed to assess the clinical deterioration
of patients in the days following admission by using machine
learning algorithms and some clinical parameters such as oxy-
gen requirement, respiratory rate, oxygen saturation, or body
temperature. To do this, an initial anatomical mapping was
performed to generate a global network to which a local net-
work was subsequently applied to obtain the details that would
allow these zones to be labeled in combination with the clinical
data previously attached. Other authors used the Pulmonary X-
ray Severity (PXS) scoring system [45] and trained a Siamese
neural network model with pairs of chest radiographs. This
pairing allowed the calculation of the Euclidean distance be-
tween the layers of the radiological images, which was used as
a continuous measure of severity similarity. The ResNet18 and
ResNet50 [44] architectures are two DL networks composed
of 18 and 50 layers, respectively, configured as proposed by
He et al. [57]. To evaluate the results obtained, tools such
as Class Activation Mapping (CAM) or Gradient CAM (Grad-
CAM) were used to allow the interpretation of the decision-
making by the model. The EfficientNet [42] was designed as a
DL network using visual geometry architectures such as Visual
Geometry Group (VGG)-11 and U-Net. These enabled area
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encoding and allowed the model to learn the transformation
of the different inputs. As was the case in the previous
model, learning of EfficientNet was enhanced using the Adams
algorithm [58]. The Hierarchical Data Format (HDF5) dataset
used the DenseNet-121 prediction algorithm that yielded a
sigmoid function assigning a probability of severity, which
was subsequently refined using the binary cross-entropy loss
function and the Adam optimizer.
On the other hand, Schiaffimo et al. [47] developed ma-

chine learning models based on support vector machines and
multilayer perceptrons. These systems, after calculating the
absolute value of the Least Absolute Shrinkage and Selection
Operator (LASSO) regression coefficients, made it possible to
rank the importance of each feature according to the severity of
the patient [59]. The BS-EWM predictive model [41] based its
analyses on an oversampling through the SMOTE procedure
that allowed the predictions made through random forests to
be extracted. Prediction with the convolutional neural model
CheXNet-Cov19 [40] based on the CheXNet DL model [60]
replaced the result layer on 3.5 nodes. This resulted in final
prediction models using the Light Gradient Boosting Machine
(LGBM) algorithm.
A common drawback to most of the AI systems developed

was the need for validated datasets. This is particularly im-
portant in the case of chest radiographs since their intrinsic
capability to detect abnormalities specific to COVID-19 is low
compared to chest CT. In some cases, international medical
image repositories, such as ImageNet or DenseNet121, were
used to train themodels, allowingmillions of chest radiographs
to be processed prior to validation and testing in hospital
services [61, 62].
The main strengths of our study lie in the use of inter-

national standards in designing and reporting the results of
this systematic review, sensitive search equation exploring
the most relevant databases in health sciences, and screening
and quality assessment by two independent researchers. In
addition, the multidisciplinary nature of the research team
allowed us to offer diverse and complementary perspectives to
address our research hypothesis. Nevertheless, we restricted
languages to English and Spanish, and we did not search
unpublished documents. Therefore, it is possible that a selec-
tion bias affected our identified sample of studies. Moreover,
the heterogeneity of the AI techniques included in our study
prevented us from conducting precise comparisons, and, con-
sequently, our results should be considered cautiously. In this
same vein, future studies should be able to give quantitative
information on how much AI algorithms help in the triage
of patients in the ED. Another perceived limitation of our
review is that discrepancies in the quality assessment were
solved by consultation to a third researcher with experience
in the field. Although this approach is common in systematic
reviews and meta-analyses [63], other approaches such as a
weighted average of researchers’ decisions could have been
used. Finally, most of the included studies were conducted
on patients affected by SARS-CoV-2 variants different from
the current circulating variants of concern, so the diagnostic
accuracy of AI techniques nowadays might not exactly adjust
to previously reported results.
Our results reinforce the need for investigating the poten-

tial applications of AI in the diagnosis and decision-making
regarding COVID-19. Given the excess of clinical demand
during epidemiological waves, the potential existence of future
variant of concern and the progress made in the use of this
technology for this pathology to date, it is recommendable
to continue optimizing these models and implementing them
into the EDs. Future studies should evaluate the impact of
these techniques on saving time, improving healthcare costs,
enhancing the quality of care and prognosis of patients with
COVID-19.

5. Conclusions

Our study showed that the application of AI algorithms in
radiological imaging makes triage of COVID-19 patients in
the ED more efficient. In particular, DL methods based on the
combination of chest radiography and scoring systems were
associated with higher ROC AUC values compared to the con-
trol performed by experienced radiologists. However, further
studies are needed to evaluate other parameters of efficiency
in Emergency Services and to consider the application of these
algorithms in the management of other pathologies.
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