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Abstract
This study aimed to screening different expression genes (DEGs) related to ischemic
heart failure (IHF). For screening DEGs in gene omnibus (GEO) dataset, limmamethods
were used to screen the significant DEGs between IHF and sham groups. Venn plot was
used for the analysis of the intersection DEGs among three GEO datasets (GSE107568,
GSE107569, and GSE116250). String and KEGG (kyoto encyclopedia of genes and
genomes) pathway were used for the analysis of key DEGs and their associated signal
pathway. IHF rats model were established by high ligation of the anterior descending
branch of the coronary artery. Functional indices were analyzed using echocardiography.
IHF rats were then administrated with AAV-shCOL3A1 to knockdown its expression.
The expression of COL3A1 was measured by RNA-sequencing and western blotting.
Transmission electron microscope (TEM) assay was used to measure the apoptosis of
cardiomyocytes. Serum AGE (advanced glycation end-products), SOD (superoxide
dismutase), MDA (malondialdehyde), and LDH (lactate dehydrogenase) levels were
determined by enzyme-linked immunosorbent assay (ELISA) kit. Limma analysis
discovered 14 upregulated DEGs were involved in three GEO datasets (GSE107568,
GSE107569, and GSE116250), and COL3A1 was identified as one of the key genes,
which was associated with AGE/RAGE (receptor for advanced glycation end-products)
pathway by KEGG enrichment analysis. Western blotting and RNA-Seq indicated that
COL3A1 protein andmRNAwere highly expressed in IHF rats model as compared to that
in sham rats. Pathology photograph analysis showed that COL3A1 deficiency inhibited
infarct size in IHF rats. In addition, knockdown of COL3A1 decreased cell apoptosis
in IHF rats by transmission electron microscope (TEM) assay. Mechanically, COL3A1
deficiency inhibited IHF development through activating AGE/RAGE signal pathway.
The present study suggests that COL3A1 induces IHF progression and development
through activating AGE/RAGE pathway.
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1. Introduction

Heart failure is a syndrome characterized by a decrease in
the pumping function of the heart and is the final stage in
the development of many cardiovascular diseases, such as
hypertension, myocardial ischemia, cardiomyopathy, and ar-
rhythmias. Cardiac pumping insufficiency and arrhythmias
due to heart failure are the main causes of death in patients
with heart failure. It has been shown that in the early stages of
heart failure, the systolic and diastolic rates of cardiomyocytes
are slowed and the action potential time course is prolonged
[1]. For normal myocardium, as the heart rate accelerates, my-
ocardial contraction force increases gradually, showing a pos-
itive frequency-force relationship, but in failing myocardium,
when the heart rate is slow, myocardial contraction force and
myocardial shortening amplitude are normal or even increase;

while when the heart rate accelerates, myocardial contrac-
tion force and its shortening amplitude decrease or remain
unchanged, showing a negative frequency-force relationship
[2]. With the continuous improvement of medical technology,
the level of treatment for heart failure has also increased sub-
stantially, but its mortality rate is still greater than the annual
survival rate, even higher than some malignant tumors.

Type III collagenwas first discovered and described in 1971.
It is an important structural protein and is classified as one
of the main fibrous collagens. Type III collagen is the main
structural component of hollow organs, such as large blood
vessels, uterus, and intestines, where these tissues must be
stretched. It is also found in many other tissues related to
type I collagen. At all stages of embryonic development, the
expression of type I and type III collagen seems to be coor-
dinated. A previous study demonstrated that platelets interact
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with type III collagen through specific glycoprotein and non-
integrin receptors. Furthermore, Type III collagen plays a role
in cell adhesion, migration, proliferation, and differentiation
through interaction with cell surface receptor-integrins [3].
Kitamura et al. [4] analyzed heart tissue specimens from
35 patients with hypertrophic cardiomyopathy. The amount
of type III collagen detected by immunostaining is related to
several cardiac indicators of diastolic function and indicated
that increased amount of fibrosis was related to poor cardiac
function [4]. It has been reported in the literature thatCOL1A1,
a homolog of COL3A1, contributes to the progression of heart
failure in plasma and may be a potential plasma biomarker for
predicting heart transplantation (HTx) within one year after the
onset of heart failure and may play a role in the development
of HF [5]. However, the function of COL3A1 is poorly
understood in ischemic heart failure (IHF).

In this study, low-output heart failure was established
through the construction of a rat heart failure model-coronary
artery ligation, and the heart failure screening criteria were
based on the relevant heart failure diagnosis guidelines [6–9].
In addition, pathway prediction showed that COL3A1 is
significantly related to the AGE/RAGE signaling pathway.
Studies have shown that the accumulation of end-stage
glycosylation products (AGE) and the activation of AGE
receptors (RAGE) can induce continuous oxidative stress in
vascular tissues, which is closely related to the progression
of heart failure [10]. However, no studies have reported the
role of COL3A1 and its regulation of AGE/RAGE signaling
pathway. This study attempts to reveal the mechanism by
which COL3A1 promotes the progression of heart failure by
regulating the AGE/RAGE signaling pathway.

In this study, CLO3A1was identified as one of the key genes
in the progression of IHF due to its high expression in IHF rats
model. COL3A1 depletion decreased infarct size and cell apop-
tosis in IHF rats model. Mechanically, COL3A1 deficiency
inhibited IHF through activating AGE/RAGE signal pathway.

2. Materials and methods

2.1 Box plot, Venn diagram, PPI and KEGG
enrichment analysis of GEO dataset

Different expression genes (DEGs) from GEO (GSE107568,
GSE107569, GSE116250) was determined by bioinformatical
analysis (limma analysis different expression genes, data
filtering and standardization were performed as described
previously [11–14]. ComBat method implemented in the R
package ggplot2, GEOquery, and sva were used to account for
platform and batch effects. KEGG-GO analysis was performed
by using of the clusterProfiler package for R language
(version 4.2.2, Bell Laboratories, Murray Hill, NJ, USA) [15].
Pathway enrichment analysis was obtained from metascape
online (https://metascape.org/gp/index.html) [16].
PPI (protein-protein interaction) analysis of COL3A1 was
obtained from String: functional protein association networks
(string-db.org).

2.2 Establishment of IHF rat model
After anesthesia in adult male Spragure-Dawley (SD) rats
(12–14 weeks), a longitudinal incision was made in the left
anterior area of the heart. The thoracic cavity was exposed
by blunt separation and breaking the fourth to last rib, the
pericardium was torn away to expose the heart, and the left
anterior descending branch was permanently ligated 2–3 mm
from the aortic root. A change in color of the distal end
of the ligated myocardium was observed in the successfully
ligated hearts. Rats in the sham operation group (sham) passed
under the coronary artery without ligation. After 4 weeks, all
rats were killed by severing the necks. The heart functional
index was measured by ultrasonic cardiogram. Myocardial
tissue sections were stained by TCC (total collagen content) as
previous depicted. All animal experiments were approved by
the Ethics Committee of Jiangsu Rongjun Hospital for animal
use and performed in accordance with the National Institutes
of Health (NIH) guide for the Care and Use of Laboratory
Animal.

2.3 RNA-Seq analysis
RNA-Seq was performed as described previously [17]. After
collecting samples, total RNA was extracted using TRIzol
reagent (15596018, Ambion, Foster City, CA, USA). The
sequencing library was then constructed and DEGs were an-
alyzed.

2.4 western blotting analysis
Western blotting was performed as described
previously [18]. And immunoblotted with the
following antibodies: anti-mouse COL3A1 (1:1000,
sc-6253, Santa Cruz Biotechnology, Santa Cruz,
CA, USA), anti-mouse Bax (1:1000, sc-20067,
Santa Cruz Biotechnology, Santa Cruz, CA, USA),
anti-mouse the B-cell lymphoma-2 (BCL-2) (1:1000,
sc-73822, Santa Cruz Biotechnology, Santa Cruz,
CA, USA), anti-mouse Caspase-3 (1:1000, sc-
7272, Santa Cruz Biotechnology, Santa Cruz,
CA, USA), anti-mouse RAGE (1:1000, sc-74473,
Santa Cruz Biotechnology, Santa Cruz, CA,
USA), and anti-mouse β-actin (1:1000, sc-8432,
Santa Cruz Biotechnology, Santa Cruz, CA, USA).
Then, the Polyvinylidene Fluoride (PVDF) (1620184,
bio-rad, USA) membranes were washed and secondary
antibodies were applied 1:5000 for 1 h at room temperature,
the immunoreactions were visualized with chemiluminescent
Electrochemiluminescence (ECL) (1705061, bio-rad, USA)
reagent.

2.5 Transmission electron microscope (TEM)
assay
TEM (HITACHI, H-7650, Tokyo, Japan) assay was performed
as described previously [19]. Cells were seeded in copper
mesh, then washed, fixed, embedded, and pictures were cap-
tured by TEM.

https://metascape.org/gp/index.html
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2.6 Enzyme-linked immunosorbent assay
(ELISA)
5 × 103 cells were seeded in 96-well plates with complete
medium with FBS (fetal bovine serum) (A4736201, gibco,
USA) for 24 h. Then, the supernatant was tested using the
AGE, MDA, SOD, and LDH ELISA kit (ab183367, abcam,
England) according to the instructions. Finally, the absorbance
value was detected using a microplate reader (EL406, BioTek,
Winooski, Vermont, USA). The concentrations of cytokines
were obtained according to the standard curves.

2.7 Establishment of COL3A1 deficiency rats
model
The plasmids of shCOL3A1-AAV and shNC (sh-negative
control)-AAV were purchased from Invitrogen (shCOL3A1:
GCTACTTCTCGCTCTGCTTCA; Carlsbad, CA, USA).
The rats in IHF and sham groups were injected with 100 µL
adeno-associated virus (10^12 µg/mL) through caudal vein.
After 3 weeks, rats were killed, sectioned, and photographed.

2.8 Statistical analysis
Student’s t-test and one-way ANOVA (analysis of variance)
were used for statistical analysis. Data were presented as
means ± SEM (standard error of mean) of three independent
experiments. A p-value of 0.05 or less was considered to be
significant.

3. Results

3.1 Multi-chip combined analysis to screen
DEGs involved in the development of IHF
In order to screen the DEGs in IHF compared with non-failing
group, R package (ggplot2 [20] and GEOquery [21]) were
used for analysis based on the GEO datasets (GSE107568,
GSE107569, and GSE116250). As shown in Fig. 1A–C,
all GEO datasets showed downregulated (blue dot) and up-
regulated (red dot) expression genes. Moreover, 14 upreg-
ulated DEGs and 0 downregulated DEGs were respectively
involved in the three datasets (Fig. 1D). The online platform-
String [22] (http://string-db.org) was used to predict the
protein-protein interaction among DEGs. The results found
that COL3A1 is the key gene of these DEGs (Fig. 1E). In
addition, the DEGs were mainly associated with AGE/RAGE
signaling pathway by KEGG enrichment analysis (Fig. 1F).

3.2 COL3A1 is significantly up-regulated in
myocardial cells from rats with IHF
High ligation of the anterior descending coronary artery was
used to establish the rats model of IHF. As shown in Fig. 2A,
LVEF (left ventricular ejection fraction) [23] was decreased
in myocardial cells of rats with IHF compared to that in sham
group. On the contrary, both of LVIDs (left ventricular internal
diameter) and LVIDd (left ventricular internal dimension dias-
tole) were increased in myocardial cells of rats with IHF com-
pared to that in sham group (Fig. 2B–C). Additionally, FS was
decreased in myocardial cells of rats with IHF compared to that

in sham rats (Fig. 2D). Based on the results of cardiac function
index, the infarct size was significantly increased in IHF group
rats compared to that in sham rats (Fig. 2E). Interestingly,
COL3A1 mRNA and protein expressions were upregulated in
IHF group compared to that in sham rats (Fig. 2F–G). Taken
together, these data indicated that the upregulation of COL3A1
in myocardial cells of rats with IHF.

3.3 Knockdown of COL3A1 alleviates
myocardial cell damage and apoptosis in
rats with IHF.
In order to investigate the function of COL3A in IHF rats,
the IHF rats model were administrated with AAV-shCOL3A1
to knockdown COL3A expression, which was validated by
western blotting (Fig. 3A). As shown in Fig. 3B, knockdown
of COL3A1 in IHF rats remarkably inhibited the infarct size
compared with IHF rats with AAV-shNC treatment. Apart
from this, COL3A1 deficiency antagonized the inhibition of
LVEF and FS in IHF rat as compared to IHF rats with AAV-
shNC treatment. On the contrary, knockdown of COL3A1
decreased LVIDs and LVIDd in IHF rat as compared to IHF
rats with AAV-shNC treatment (Fig. 3C–F).
In addition, TEM assay was used to analyze myocardial

cell apoptosis in rats. As shown in Fig. 4A, there were more
myocardial cell apoptosis in IHF rats as compared to that in
sham rats. COL3A1 deficiency reversed the enhancement of
cell apoptosis in IHF rats with AAV-shNC. Moreover, Bcl-2
expression was decreased in IHF rats as compared to that in
sham rats, whereas knockdown of COL3A1 enhanced the ex-
pression of Bcl-2 in IHF rats. Reversely, COL3A1 deficiency
reduced Bax and Caspase-3 expressions in IHF rats with AAV-
shNC treatment (Fig. 4B). Taken together, these data suggested
that COL3A1 promotes cell damage and apoptosis in rats with
IHF.

3.4 COL3A1 deficiency suppresses AGE/RAGE
signaling pathway and oxidative stress in
rats with IHF.
Based on the results of KEGG pathway enrichment analysis,
the DEGs were mainly involved in AGE/RAGE pathway [24].
Therefore, the serumAGE level in rat was analyzed. As shown
in Fig. 5A, IHF rat showed high serum AGE level as com-
pared to sham rats, while knockdown of CLO3A1 suppressed
the upregulation of serum AGE in IHF rats with AAV-shNC
treatment. Similarly, the expression of RAGE protein was
also decreased in IHF rats with AAV-shCOL3A1 treatment
as compared to with AAV-shNC (Fig. 5B). Additionally, in-
creased LDH and MDA protein levels were found in IHF rats
as compared to that in sham rats, and COL3A1 knockdown
in IHF rats decreased LDH and MDA when compared with
IHF rats with AAV-shNC treatment (Fig. 5C–D). Otherwise,
SOD was downregulated in IHF rats compared to sham rats,
while COL3A1 deficiency alleviated the inhibition of SOD in
IHF rats with AAV-shNC treatment. Collectively, these results
indicated that COL3A1 positively regulates AGE/RAGE sig-
naling pathway in IHF rats.

http://string-db.org
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FIGURE 1. Multi-chip combined analysis to screen DEGs involved in the development of IHF. (A–C) Volcano plot was
used to screen DEGs (different expression genes) between non-failing group and IHF group in gene omnibus (GEO) dataset
(GSE107568, GSE107569, and GSE116250). Blue: decreased expression genes, red: increased expression genes, grey: no
significant change expression genes. Based on an adjusted p < 0.05 and |log fold change| > 1. Ns: no significance, p ≥ 0.05;
*, p < 0.05; **, p < 0.01; ***, p < 0.001. (D) Venn plot analysis of DEGs among three datasets (GSE107568, GSE107569,
GSE116250). (E) PPI network showed that COL3A1 is a key gene in DEGs. (F) KEGG (kyoto encyclopedia of genes and
genomes) enrichment analysis of DEGs. IHF: ischemic heart failure.

4. Discussion

Despite significant improvements in living standards and med-
ical care, heart failure remains a worldwide problem. Treating
heart failure is costly and affects the quality of life of patients to
varying degrees. Ischemic cardiomyopathy is one of the most
common causes of heart failure. In addition, some patients
have other diseases, such as type 2 diabetes, which compli-
cates therapeutic interventions for heart failure. Angiotensin-
converting enzyme inhibitors, β-blockers, diuretics, contrac-
tile drugs, and cardiac resynchronization therapy (CRT) have
been widely used in the treatment of IHF. However, a sig-
nificant number of patients inevitably enter end-stage heart
failure for various reasons. Therefore, identification of specific
biomarkers of IHF are crucial.

Accumulation of COL3A1 is a specific marker of several
human diseases, including systemic sclerosis, cardiac fibrosis,
lung fibrosis, liver cirrhosis and renal fibrosis [3]. Previous
studies demonstrated that the accumulation of extracellular
matrix proteins in heart tissue can lead to scars caused by
myocardial fibrosis, myocardial infarction and other injuries,
causing impaired myocardial function, including ischeminc
heart failure [25]. Herpel et al. [26] studied several extra-
cellular matrix proteins extracted from heart tissue samples
from patients diagnosed with dilatation, ischemic, and valvular
cardiomyopathy by immunostaining. The results showed that
different types of cardiomyopathy have myocardial interstitial
fibrosis, but they differ in the distribution of various extra-
cellular matrix proteins [26]. Research specializing in type
III collagen have included studies on hypertrophic and dilated
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FIGURE 2. COL3A1 is significantly up-regulated in myocardial cells from rats with IHF. (A–D) Rats were divided
into sham group and IHF group. Echocardiography analysis of cardiac function index (4 weeks after surgery), including Left
ventricular ejection fraction (LVEF), left ventricular end systolic diameter (LVIDs), left ventricular end systolic volume (LVIDd),
and left ventricular shortening fraction (LVFS). (E) TCC staining analysis of myocardial infarction size in IHF rats. (F) The
mRNA expression of COL3A1 (type III collagen) was analyzed by RNA-sequencing. (G) Western blotting assay of COL3A1
protein expression. Data are representative of three independent experiments (mean ± SD). *, p < 0.05 and **, p < 0.01. vs.
Sham group. IHF: ischemic heart failure.

FIGURE 3. Knockdown of COL3A1 alleviates myocardial cell damage in rats with IHF. (A) Knockdown COL3A1-AAV
(Adeno-associated virus) plasmid through tail vein injection of sham or IHF model, the expression of COL3A1 was measured by
western blotting. (B) TCC staining analysis of the myocardial infarction size in IHF rats with COL3A1-AAV plasmid treatment.
(C–F) Echocardiography analysis of cardiac function index in IHF rats with COL3A1-AAV plasmid treatment (4 weeks after
surgery), including Left ventricular ejection fraction (LVEF), left ventricular end systolic diameter (LVIDs), left ventricular end
systolic volume (LVIDd), left ventricular shortening fraction (LVFS). **, p< 0.01 vs. Sham + AAV-shNC group. #, p< 0.05 and
##, p < 0.01. vs. IHF + AAV-shNC group. @, p < 0.05 and @@, p < 0.01. vs. Sham + AAV-shCOL3A1 group. IHF: ischemic
heart failure.
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FIGURE 4. Knockdown of COL3A1 inhibits apoptosis of cardiomyocytes in rats with IHF. (A) TEM assay analysis of
cell apoptosis from IHF rats with COL3A1-AAV (Adeno-associated virus) plasmid treatment. (B) The western blotting assay
determined the expressions of Bcl-2, Bax, and Caspase-3 in IHF rats with COL3A1-AAV plasmid treatment. **, p < 0.01 vs.
Sham + AAV-shNC group. ##, p < 0.01. vs. IHF + AAV-shNC group. @@, p < 0.01. vs. Sham + AAV-shCOL3A1 group. IHF:
ischemic heart failure.

FIGURE 5. COL3A1 deficiency suppresses AGE/RAGE signaling pathway and oxidative stress in rats with IHF. (A)
Serum AGE level in IHF rats with COL3A1-AAV plasmid treatment was detected by ELISA. (B) Western blotting assay on
the expression level of RAGE (receptor for advanced glycation end-products) in cardiomyocytes from rats with IHF. (C–E) LDH
(lactate dehydrogenase), MDA (malondialdehyde) and SOD (superoxide dismutase) levels in IHF rats withCOL3A1-AAVplasmid
treatment were detected by ELISA. IHF: ischemic heart failure.
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cardiomyopathy, pulmonary vascular disease, and alternative
fibrosis after myocardial infarction. Changes in type III col-
lagen have also been studied in a rare cardiomyopathy, called
idiopathic restrictive cardiomyopathy. However, COL3A1 as
a member of type III collagen, remains poorly clarified. This
study demonstrated that, there are 14 upregulated DEGs were
involved in the three GEO datasets, and CLO3A1 is one of
the key genes in the progression of IHF. COL3A1 was highly
expressed in IHF rats compared to that in sham rats. COL3A1
deficiency inhibited infarct size and cell apoptosis in IHF
rats. Mechanically, COL3A1 deficiency reduced IHF through
activating AGE/RAGE signal pathway.

In the past two decades, many researches have been re-
ported on COL3A1, one of the most abundant component
of extracellular matrix (ECM) in the TME [27–30]. For
example, miR-29 acted as a tumor suppressor in control of
methotrexate resistance and cell apoptosis through regulating
COL3A1, which indicates the role ofCLO3A1 in cell apoptosis
[31]. Another study also demonstrated that miR-let-7b is an
important regulator in reducing the expression of COL3A1 to
inhibit apoptosis through activating Bcl2 and inactivating Cas-
pase 3 [32]. Here, it is demonstrated that COL3A1 deficiency
negatively regulates cell apoptosis through Bcl-2 upregulation
and suppression of Bax and Caspase-3 in IHF rats model.
However, the molecular mechanism underlying the role of
COL3A1 in suppressing cell apoptosis in IHF rats model need
further investigation.

The AGE/RAGE signaling pathway is a common transduc-
tion pathway in regulation of cell migration, cell apoptosis,
and cell proliferation [10, 33, 34]. Studies have demonstrated
that the AGE/RAGE pathway is associated with fibrosis in
the diabetic heart, and cardiovascular disease in patients with
chronic kidney disease [35, 36]. Previous studies have reported
that RAGE acts a vital role in the apoptosis of cardiomyocytes
through stimulation of p38-MAPK (mitogen-activated protein
kinase) and JNK (c-Jun N-terminal kinase) pathways [37,
38]. In this study, it is demonstrated that knockdown of
COL3A1 reduced the activity of AGE/RAGE signal pathway.
It is thus speculated that COL3A1 deficiency decreases cell
apoptosis through RAGE, which may be regulated by p38-
MAPK and JNK pathways. However, the underlying mech-
anism of COL3A1 in regulating of AGE/RAGE need further
investigation.

5. Conclusions

The present study found that COL3A1 was identified as a cru-
cial gene according to bioinformatics analysis, and validated
to be upregulated in IHF rats model. Moreover, the infarct
size was increased in IHF rats model compared to sham rats.
Moreover, COL3A1 deficiency antagonized the induction of
infarct, cell apoptosis, AGE/RAGE signaling pathway and
oxidative stress levels in IHF rats model. In summary, this
study confirmed that COL3A1-AGE/RAGE axis played an
important role in promoting the progression of IHF. This might
provide a promising hallmark for IHF diagnosis and therapy.
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