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Abstract

Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to
infections. It is a leading cause of morbidity and mortality in hospitalized patients.
Patients with sepsis often require care in the intensive care unit (ICU) which is costly
to the patients and their families. Sepsis has no specific clinical manifestations, and
its pathophysiological mechanism is complex. The disease progresses rapidly which
makes early diagnosis difficult. Severe forms of the disease, such as septic shock,
may lead to organ dysfunction, organ failure, and death. As an emerging “-omics”
technology, metabolomics has revolutionized the clinical and research landscape of
sepsis. Metabolomics has been applied in the prognosis, diagnosis, and risk stratification
in patients with sepsis. This technology provides details on the metabolites and
biochemical pathways commonly associated with the pathophysiology of sepsis. At
present, it is mostly used to identify metabolites in various diseases. Using this
technology, metabolites in body fluids such as blood and urine are detected and analyzed
in relation to disease progresssion. The technology therefore helps to understand the
pathogenesis of diseases and promote early diagnosis and treatment of the disease. So
far, the applicaition of metabolomics in patients with sepsis has not been well defined.
This article briefly reviews the application of metabolomics technology in patients with
sepsis in recent years, to generate ideas for improving rapid diagnosis and prognosis

evaluation of patients with sepsis.
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1. Introduction

Currently, sepsis is defined as a life-threatening organ dys-
function caused by a dysregulated host response to infection.
Organ dysfunction is evaluated using the sequential organ
failure assessment (SOFA) score. A SOFA score >2 indicates
organ dysfunction [1]. Sepsis can progress to severe sepsis
and septic shock. According to the 2016 guidelines, septic
shock is defined as sepsis in which the underlying circulatory
and cellular metabolism abnormalities cause death [1]. Sepsis
progresses rapidly, and it is a common cause of death in
intensive care units. A study published in the Lancet in
2020 showed that about 48.9 million people suffered from
sepsis in 2017 worldwide, of which 11 million eventually died.
Globally, sepsis contributes to 19.7% of all deaths [2]. In
mainland China, the 90-day mortality rate of sepsis patients
in the intensive care unit was about 35.5% [3].

Studies have shown that analysis of the human metabolome
can reveal the state of sepsis in an individual. Several biomark-
ers can predict the development of sepsis or response of sep-
tic patients to treatment. The discovery and validation of
such metabolomic biomarkers enable faster, cheaper and more

comprehensive metabolomic analysis for patient with sepsis.
As a new “omics” technology, metabolomics is in the same
category of systems biology with genomics, transcriptomics,
and proteomics. Metabolomics refer to changes in metabo-
lites under normal conditions and in response to changes in
the internal environment [4]. This review briefly introduces
metabolomics-related technologies and their applications in
the diagnosis, pathogenesis, treatment, and prognosis of sepsis.

2. Metabolomics and related
technologies

The concept of metabolomics emerged from the term
“metabolome”, which was first proposed by Oliver in 1998
and revised by Nicholson in 1999 [5, 6]. Over the years,
the concept of metabolomics has evolved to include high-
throughput identification, quantification, and characterization
of endogenous and exogenous metabolites. To date, over
20,000 compounds belonging to various classes of endogenous
metabolites (about 8500) and exogenous metabolites (about
11,500) have been identified. Research objects used in
metabolomics are small molecules (molecular weight MW
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<1500 Da) in organs, tissues, or cells, most of which are
intermediate products or the most downstream products
of metabolic processes in the body. Metabolites can easily,
accurately, and directly reflect changes in the body. Therefore,
metabolomics, a new “omics” approach, is being applied in
medical practice to promote disease research [7-9]. Two
metabolomic approaches are used: targeted or untargeted.
The former analyses known metabolites. This approach has
high sensitivity and specificity. The latter comprehensively
analyses biological samples and compares metabolic profiles
associated with different intervention measures. It further
reveals differential metabolites based on statistical analysis,
which can be used for the discovery of biomarkers [10, 11].
Therefore, untargeted metabolomics does not analyze the
specific metabolites.

The analytical techniques used in metabolomics include
nuclear magnetic resonance (NMR), gas chromatography-
mass spectrometry (GC-MS), liquid chromatography-
mass spectrometry (LC-MS), Fourier transform infrared
spectroscopy, and capillary electrophoresis-mass spectrometry
(CE-MS) [12, 13]. Each of these techniques has its own
unique characteristics. These techniques can qualitatively and
quantitatively analyze body samples to detect small molecular
metabolites and reveal the body’s metabolic map. Metabolic
techniques are critical in discovering the changes and laws of
metabolites in the body, as well as new biomarkers, which are
essential in the diagnosis, treatment, and prognosis evaluation
of disease [14].

Metabolomics has been widely applied in agriculture,
forestry, animals and plants, drug research and development,
disease research, among other fields. In disease research,
metabolomics has mainly been used to investigate tumors,
infection, and immune disorders. To comprehensively detect
and analyze all metabolites in the body, it is recommended to
employ a combination of different analytical platforms [15].

2.1 Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) was first applied to
metabolomics in 1974. D Wilson and AL Burlingame used
deuterium and carbon-13 traces to study the metabolism of
ethanol in rats [16]. Since then, NMR-based metabolomics
have been widely applied because it is non-damaging, and
can be used for metabolic analysis of living cells. Second, the
technology require simple sample preparation and results are
reproducible. Third, it has high sensitivity to all metabolites
and can quantify all metabolites simultaneously. The NMR
technology is often used in non-targeted metabolomics
to identify and determine the structure of unknown
metabolites using stable isotope labels. The application
of NMR technology is, however, limited following that
it has low sensitivity and resolution. In addition, the
detected metabolites often show multiple overlapping peaks,
which is difficult to qualitatively interpret. The minimum
concentration of metabolites that can be detected qualitatively
and quantitatively is 1-5 pmol/L. The NMR technology
can not accurately detect metabolites below the minimum
detection concentration [17, 18]. To improve its accuracy, the
scanning time and magnetic field strength are often increased.
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Currently, the most commonly used NMR technology is
IH NMR, although other technologies such as, 13C NMR,
15N NMR, 13P NMR, and 2D NMR are applied. Therefore,
different metabolomics technologies can be employed for
different experimental purposes and methods [19-22].

2.2 Gas chromatography-mass
spectrometry

Gas chromatography-mass spectrometry (GC-MS) is an
analytical method that combines the features of gas-
chromatography and mass spectrometry to identify different
substances within a test sample. The most important feature
of this method is its sensitivity to gases and the ability to
study volatile substances or substances with lower boiling
points.  However, this method requires that substances
that are not volatile should be derivatized into substances
with lower boiling points before analysis. Derivatization
treatments are complex, complicated, time-consuming, and
expensive.  Furthermore, complicated sample derivation
processes may lead to the loss of important substances in
the sample. Most of the metabolites have high boiling
points and are difficult to volatilize. Specifically, when
using GC-MS technology, derivatization such as methylation
or silanization is required. This limits the application of
GC-MS in metabolomics. Nonetheless, GC-MS has been
widely used in the study of metabolites [23-27]. This is
because it combines the characteristics of high-efficiency
separation of chromatograms and structure identification of
mass spectrometry. It has high sensitivity and precision and
can separate thousands of metabolites of different properties
at the same time. And lastly, it can be applied to both targeted
and non-targeted metabolomics [28-31].

2.3 Liquid chromatography-mass
spectrometry

Liquid chromatography-mass spectrometry (LC-MS) is a tech-
nique that combines the physical separation capabilities of
liquid chromatography (or HPLC) with the mass analysis ca-
pabilities of mass spectrometry (MS). The technique is mainly
used to analyze non-volatile substances. Although its sen-
sitivity and resolution are slightly inferior to GC-MS, it is
still better than NMR. LC-MS can effectively detect various
metabolites and be used in both broad- spectrum targeted and
non-targeted manners [23]. The LC-MS technique has the
potential to analyze and identify metabolites in samples with
a high boiling point even when their content is low. Compared
with GC-MS, LC-MS does not require complex derivatization
processing. LC-MS is used to compare the metabolic profiles
of different treatment groups, which reveals the differential
metabolites between groups and helps clarify the mechanisms
of disease [32, 33]. At present, LC-MS-based metabolomics is
widely used in disease diagnosis, drug development, treatment
efficacy evaluation, and outcome prediction [28, 34, 35].



_Jn— Signa Vitae

3. Application of metabolomics in sepsis

3.1 Application of metabolomics in the
diagnosis of sepsis

According to the guidelines issued in 2016, patients with in-
fections or those suspected of have infections should be scored
with SOFA. A SOFA score value >2 indicates that sepsis can
be diagnosed. However, the SOFA scoring table has complex
data that is difficult to apply. For patients with suspected infec-
tion, Qsofa (systolic blood pressure <100 mmHg, respiratory
rate >22 breaths/min, change of consciousness) is also used.
If the score is >2 points, sepsis can be diagnosed after further
assessment of the organ dysfunction [1]. Progression of sepsis
can lead to septic shock, which significantly increases the
fatality rate of patients, resulting in poor prognosis. Therefore,
early detection and diagnosis of sepsis is necessary for clinical
management and treatment.

In sepsis research, interleukin 6 (IL-6), procalcitonin (PCT),
C-reactive protein (CRP), and lactic acid (Lac) are the most
widely researched biomarkers. However, these biomarkers
are not sepsis-specific, and therefore are not ideal for early
and accurate diagnosis of sepsis. As an emerging “omics”
technology, metabolomics can play a role in the diagnosis of
sepsis through combining the current diagnostic standards and
commonly used biomarkers [36—38].

To date, several studies have investigated that application
of metabolomics in the diagnosis of sepsis. This has been
carried out using various models including patients and mice,
dogs, horses, fruit flies and other animals. Most studies
have focused on finding abnormal metabolites in sepsis to
promote early diagnosis of sepsis. For example, Anna M
Kauppi used metabolomics method of GC-TOF-MS to analyze
blood samples of 65 sepsis patients. The study identified 6
metabolites that could reflect sepsis, of which myristic acid
had the highest predictive value. In recent years, there have
been more similar studies [39]. Arturas Grauslys used NMR
to study 55 infected children (25 bacterial infections, 30 vi-
ral infections) and 58 uninfected children undergoing heart
surgery. The results showed that metabolomics can distinguish
children with infection from children with postoperative in-
flammation but no infection [40]. James R. Anderson used
NMR technology to analyze the synovial tissue of horses.
The author concluded that the difference in metabolites can
distinguish septic horses from non-septic horses. Moreover,
the content of glycine and proline in sepsis horses was signif-
icantly increased, which may be a relevant indicator for the
diagnosis of sepsis [41]. However, the study findings require
further research and verification. Shi-Hui Lin analyzed 31
sepsis patients and 23 healthy controls based on the GC-MS
method. The results showed that energy metabolism, amino
acid metabolism, and lipid metabolism were lower in patients
with sepsis compared with participants in the control group.
In addition, energy metabolism was particularly significant
[42]. Excessive energy metabolites may be detrimental to the
patient’s prognosis, and this similar result is by no means acci-
dental. Liu ef al. [43] used LC-MS metabolomics technology
to analyze the arterial blood of 50 cases of sepsis induced
by cecal ligation and puncture. The authors found that 13
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metabolic regulation substances were mainly involved in the
three major metabolisms. D-glucosamine and its phosphorus
derivatives gradually declined with the progress of multiple
organ failure, which was likely to be a characteristic metabolic
marker of sepsis. Yu et al. [44] sampled the serum, liver, and
lungs of sepsis model mice and sham-operated mice. They
employed 1H NMR metabolomics technology for analysis.
The results showed that acetate, pyruvate, and lactate were
elevated in the serum of septic mice. On the other hand,
the levels of alanine, aspartic acid, glutamate, and fumarate
decreased in the lungs of the sepsis model mice. Among them,
acetate, pyruvate, and lactate showed disturbance in the energy
metabolism through the tricarboxylic acid cycle pathway. The
authors concluded that changes in alanine and aspartic acid
reflected disturbance in amino acid metabolism. Sa Wang
divided 57 children with sepsis in the intensive care unit into
27 cases with acute kidney injury and 30 cases without acute
kidney injury. Subsequently, they used UPLC-QTOF/MS to
analyze the metabolic pathways in their urine samples. The
results showed that there was a significant difference in energy,
amino acid and lipid metabolism between the acute kidney
injury group of sepsis and the group of children with sepsis
but without acute kidney injury. They also identified different
metabolites and found some possible potential biomarkers.
Nevertheless, the potential biomarkers identified at 12 hours
and 24 hours were completely different [45]. Metabolomics
can also be used to reveal the combinations of differential
metabolites which can be used for early diagnosis of sepsis.
Presently, there is no biomarker that can be used to diagnose
sepsis alone. The use of metabolomics to find a combination
of specific biomarkers may help the early diagnosis of sepsis.
Moamen Elmassry selected two variables: heat damage and
infection with Pseudomonas aeruginosa. The scholar divided
them into 4 groups and used GC-MS to analyze the blood of
mice. The results revealed that the presence of 26 metabolites.
It was further discovered that, of the 26 metabolites, a combi-
nation of 5 different metabolites can be used to early diagnose
the infection of Pseudomonas aeruginosa in burn patients [46].

The development of sepsis is a complex process that can
be triggered by either bacteria, fungi, viruses, or any type
of infection, which makes the early diagnosis of the disease
difficult [47, 48]. Studies have revealed that the role of
metabolomics in sepsis management is not well understood.
In addition, potential biomarkers and differential metabolites
in such patients or animal models of sepsis have not been
profiled. Patients with sepsis are heteregenous in terms of
metabolic status and other physiological factors. However,
currently, metabolomics is a major milestone in the diagnosis
and prognosis of sepsis. The technology has the potential
to find differential metabolites, clarify specific biomarkers,
and use specific combinations of differential metabolites to
enhance early diagnosis of sepsis. Prospect studies should
expand the sample size and adhere to strict standards for
research.
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3.2 Application of metabolomics in the
pathogenesis of sepsis

During sepsis, pathogens enter the body and activate
immune cells to release various pro-inflammatory and
anti-inflammatory factors. In the early stage, the pro-
inflammatory reaction produces a strong anti-inflammatory
immunosuppressive reaction. Failure of the immune response
to suppress the strong inflammatory reaction worsens the
patient’s condition, leading to a poor prognosis. Currently,
there is no clear understanding on the pathogenesis of sepsis.
However, inflammatory imbalance, immune disorders,
coagulopathy, oxidative stress, endotoxin shift and other
mechanisms have been linked to the occurrence of sepsis
[49-54]. Recent research has shown that metabolites of
metabolic disorders associated with energy, amino acids and
lipids are significantly increased in the plasma of patients
with sepsis. Incorporating differential metabolites or potential
metabolic pathways into metabolomics methods can help to
clarify the pathogenesis of sepsis. Lihua Zuo [55] conducted
metabolomic analysis on the plasma of septic rats and
control rats. On classifying the differential metabolites, they
were revealed to involve amino acid metabolism and lipid
metabolism only. In a different study, Sarah McGarrity
analyzed the serum metabolites of patients with sepsis using
the cell endothelial specific metabolism model iEC2812. The
results showed that the endothelial metabolism in patients
with sepsis was consistent with plasma metabolism. As
well, the glucose metabolism in non- surviving patients was
significantly up-regulated [56]. Kris M. Mogensen performed
metabolomics analysis on blood samples from 85 sepsis
patients. The study found that 10 metabolites were associated
with malnutrition in patients with sepsis. Of the metabolites,
glutathione and purine were involved in cell redox regulation
and accelerating tissue adenosine triphosphate (ATP)
degradation, respectively [57]. Christopher J. Stewart used
LC-MS metabolomics to study blood and stool samples from
premature infants with late-onset sepsis and healthy controls.
The results showed that the bacterial flora in the blood
culture of children with sepsis corresponded to the dominant
bacteria of the intestinal flora. The author concluded that
the occurrence of late-onset sepsis in premature infants was
related to the translocation of intestinal flora [58]. So far,
the role of metabolomics in the pathogenesis of sepsis is not
well defined and thus, further research is needed to reveal the
role of metabolomics in the pathogenesis of sepsis to improve
diagnose and treatment of sepsis. Sepsis-related metabolic
biomarkers cited in this paper are summarized in Table | (Ref.
[39, 41-46, 55, 57-64]).

3.3 Application of metabolomics in the
treatment and prognosis of sepsis

The most common feature of sepsis is the rapid progression
and poor prognosis. The recommended treatment is the “3 h
Bundle” plan, although the “1 h Bundle” plan is also used.
Early diagnosis, timely and correct intervention are important
for improving the prognosis of patients. The application of
metabolomics technology in the treatment and prognosis of
sepsis has been extensively studied. It has been shown that
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this technology can decrease mortality rate and improve patient
prognosis.

For patients with sepsis, it is important to timely diagnose
the infection to initiate early patient treatment and improve
prognosis. Several differential metabolite pathways have been
applied to evaluate patient prognosis. Few studies have in-
vestigated the efficacy of specific drugs used in sepsis treat-
ment, thus more comprehensive research is needed to improve
clinical treatment of patient with sepsis. In a study by Henna
et al. [59], serum samples were collected from 44 sepsis
patients and 14 healthy controls. The samples were analyzed
using 1H NMR -based metabolomics. A total of 20 non-
lipid metabolites were identified. It was found that citrate and
lactate were higher in sepsis non-survival group than in the
survival group. Previous studies have proved that elevated
citrate and its derivatives, acetyl-Coenzyme A and arachidonic
acid, can increase levels of nitric oxide and prostaglandins,
thereby causing inflammation [65]. Early removal of lactic
acid improved the prognosis of patients with sepsis [66]. These
results indicate that citrate and lactate reflect poor prognosis
of patients with sepsis. In a study involving 33 patients ad-
mitted to the intensive care unit, Waqas Khaliq and colleagues
divided the patients into four groups: sepsis survival, sepsis
death, non-septic survival, and non-septic death groups. Blood
samples were collected and analyzed using metabolomics.
The results showed that there was a significant difference
in lipid metabolism between the sepsis death group and the
sepsis surviving group. On the other hand, the metabolism
of the non-septic death group and the surviving group had no
obvious characteristics [60]. These results imply that patients
who die of sepsis may have unique metabolic features. In a
related study, Jing Zhu used GC-MS technology to perform
metabolomics analysis on 47 sepsis patients and 44 healthy
volunteers. In their study, participants were grouped according
to the Glasgow Coma Scale (GCS) score. It was found that low
GCS scores in patients with sepsis was associated with linear
reduction in concentration of 4-HPA (4-hydroxyphenylacetic
acid). They postulated that 4-HPA may be an indicator of poor
prognosis in patients with sepsis [61].

Metabolomics can also be used to evaluate the progno-
sis of patients by studying the responsiveness of patients to
therapeutic drugs. Charles R. Evans used LC-MS to ana-
lyze hematology samples of sepsis patients treated with L-
carnitine and placebo-controlled sepsis patients. The results
showed that the 1-year mortality rate of patients treated with
L-carnitine was significantly smaller than that of participants
in the control group (56% versus 75%; p = 0.01). Previ-
ously, studies have reported that non-surviving patients treated
with L-carnitine were related to vasculitis. The metabolites
were significantly increased (fibrinopeptide A, lysine, and
histamine) [62]. A study by Charles R. Evans showed that
metabolomics can be used to evaluate the prognosis of patients
with sepsis. Similar to previous studies, the report by Charles
et al. [62] revealed some vasculitis-related markers can predict
drug responsiveness and prognosis of patients. Elsewhere,
Li-Wei Liu used LC-MS to analyze the curative effect of
biapenem and Xuebijing injection on patients with sepsis.
In addition, the author constructed 32 metabolic pathways
based on the metabolites found. They found that in sepsis,
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TABLE 1. Summary of common metabolomic biomarkers in sepsis.

Metabolite Sample type Function References
Myristic acid Serum Discriminate patients with bacterial sepsis [39]
and patients with non-bacterial sepsis

Glycylproline Synovial fluid Discriminate sepsis equine SF and healthy [41]
controls

Amino acid, fatty acid, tricarboxylic acid Serum Discriminate sepsis patients and healthy [42]
controls

D-glucosamine Serum Discriminate sepsis mice and healthy [43]
controls

Acetate, pyruvate, lactate Serum Discriminate sepsis mice and healthy [44]
controls

Glycerophospholipid Urine Discriminate sepsis children with AKI and [45]

sepsis children without AKI

Trans-4-hydroxypro-line, 5- oxoproline, glycerol- Serum Discriminate sepsis caused by P, [46]

3-galactoside, indole-3-acetate, indole-3- aeruginosa in burn patients and healthy

propionate controls

Amino acid, taurine, phingosine- 1- phosphate Serum Reveal underlying therapeutic [55]

mechanisms of XBJ on sepsis mice
Pyroglutamine, hypoxanthine Serum Discriminate malnourished and non- [57]
malnourished patients in sepsis
Raffinose, sucrose, acetic acid Stool Discriminate preterm neonates with late [58]
onset sepsis and healthy controls

Citrate, 3-hydroxybutyrate, glycine, AGP, histi- Serum Discriminate sepsis patients and healthy [59]

dine controls

Sphingolipid, Lysophoshphatidylcholine, phos- Serum Differentiate sepsis survivors from deaths [60]

phatidylcholine

4-hydroxyphenylacetic acid Serum Discriminate Sepsis-associated [61]

encephalopathy (SAE) and healthy

controls

Fibrinopeptide A, allysine, histamine Serum Differentiated 1-year survivors of sepsis [62]

from nonsurvivors
Acetate, propionate, butyrate Cecal contents Discriminate K. pneumoniae-infected [63]
and serum mice and uninfected controls
Lysophosphatidylcholines, eicosatetraenoic acid, Cecal contents Reduce mortality of sepsis mice by LGG [64]

retinol acid, secondary bile acid

therapy

Abbreviations: AKI, Acute Kidney Injury;, XBJ, Xuebijing; AGP, Acid Glycoprotein; LGG, Lactobacillus rhamnosus GG.

combined application of Biapenem and Xuebijing injection
regulated the metabolic pathways more effectively than that
of monotherapy, thereby improving the prognosis of sepsis
[67]. Ting Wu used GC-MS technology to detect short-chain
fatty acids in the serum of mice. Three kinds of single-chain
antibodies (acetate, propionate and butyrate) were detected in
Klebsiella pneumoniae-infected mice at low concentrations.
Moreover, mice that were orally supplemented with these three
short-chain fatty acids had lower lung bacteria and higher
survival rates [63]. The study showed that supplementation
of the three fatty acids in patients with sepsis may improve the
prognosis of patients and reduce the mortality rate. Chen L ap-
plied UPLC-QTOF-MS-based metabolomics to analyze septic
mice with cecal ligation and puncture. The analysis showed
that Lactobacillus rhamnosus GG (LGG therapy) altered bile

acid metabolism, lysophosphatidylcholines metabolism, and
eicosatetraenoic acid metabolism. In this way, it regulated the
intestinal flora to reduce gut microbiota dysbiosis in mice with
sepsis [64]. Currently, neither LGG therapy nor short-chain
fatty acid supplementation has been applied in the treatment
of patients with sepsis. It is expected that using metabolomics
technology to evaluate patient prognosis or drug efficacy may
help to improve the management of patients with sepsis. Cur-
rently, the metabolic features in the biological fluids of septic
patients have not been clarified. A literature survey of publica-
tions on metabolomics reveals that the metabolic biomarkers
reported so far are inconsistent. Recent studies have doc-
umented that analysis of death-related metabolic pathways
(DRMPs) (Fig. 1) may help to predict the prognosis of sepsis
than analysis of blood metabolite biomarkers [68].
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FIGURE 1. The death-related metabolic pathways (DRMPs) in the blood of sepsis nonsurvivors.

4. Conclusions and perspectives

The application of metabolomics in the diagnosis and prog-
nosis of sepsis is faced with many challenges. This review
described the application of metabolomics technology in the
diagnosis and treatment of sepsis. Several studies have linked
the pathogenesis of sepsis to bacteria, fungus, and viruses and
other infections. Metabolomics can use NMR, GC-MS, LC-
MS, and other analytical techniques to find metabolic markers
or metabolic pathways in patients with sepsis. The most
advanced manifestation of any disease is that of changes in
metabolites. Metabolomics can reveal changes in metabolites
and pathophysiological changes of the body and how the body
responds to external intervention. Currently, blood culture
is the gold standard method used to identify the cause of
infection in patients with sepsis. However, this approach is
time-consuming and not effective in all patients. It should
be noted that metabolomics analysis techniques are expen-
sive. The aforementioned factors limit the clinical application
of metabolomics in sepsis. However, with the continued
improvement in the application of metabolomics in sepsis
research, it is expected that metabolomics will gain widespread
application in the analysis of blood, urine, feces, and other
samples. Other omics technologies such as proteomics and
transcriptomics can be combined with metabolomics to study

the clinical features of sepsis.
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