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Abstract
Hypoxic-ischemic brain injury after cardiac arrest is the main cause of death and
neurologic dysfunction in patients after the return of spontaneous circulation. The
mechanisms of ischemic and hypoxic brain injury include hypoxia of brain tissue
caused by the cessation of cerebral blood flow during the initial cardiac arrest and
cerebrovascular dysfunction and reperfusion injury after the recovery of circulation.
Cerebral circulatory perfusion, cerebral autoregulation, and cerebral edema can be
monitored and controlled as therapeutic targets. In this study, from the aspects of body
temperature, mean arterial pressure, oxygen concentration, partial pressure of carbon
dioxide in the artery, and cerebral edema, monitoring methods such as measurement of
cerebral oxygen saturation, assessment of cerebral blood flow, imaging of the brain, and
measurement of intracranial pressure were introduced to explore individual management
objectives for hypoxic-ischemic brain injury.
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1. Introduction

Cardiac arrest (CA) is a common cause of death worldwide. In
the United States alone, >400,000 people die of CA yearly.
Annually, >350,000 people experience out-of-hospital CA
(OHCA) inAmerica, of whom10.8% survive to discharge after
being treated by emergency medical services (EMS) and only
9% obtain good functional outcomes. Additionally, >200,000
adult patients experience in-hospital CA annually, with a sur-
vival rate of 25.8%; among the survivors, 84.6% show a
good functional status at hospital discharge [1]. In China,
approximately 545,000 people die of sudden cardiac death
every year [2]. The brain tissue is extremely sensitive to
ischemia and hypoxia, and neuronal ischemia and cell death
occur within minutes after CA. Although cardiopulmonary
resuscitation education has become popular and advances in
EMS have improved the success rate of CA resuscitation,
abnormal cerebral perfusion and reperfusion injury after the
return of spontaneous circulation (ROSC) cause persistent sec-
ondary brain injury. Brain injury is the leading cause of death
in patients with CA [3]. In addition, most survivors develop
neurologic dysfunctions, such as depression, anxiety, post-
traumatic stress disorder, and cognitive deficits [4, 5], which
seriously affect their quality of life. Therefore, preservation of
neurologic function and reduction of brain damage are the key
directions of CA therapy.
Bystander cardiopulmonary resuscitation and shortening the

time to the initiation of EMS treatment can reduce cerebral

ischemia and hypoxic damage during CA [6, 7]. In addition,
the secondary cerebral injury that occurs after ROSC can
be improved by maintaining cerebral perfusion and reducing
oxidative stress. At present, many studies have shown that
therapeutic hypothermia (TH), mean arterial pressure (MAP)
elevation, atmospheric hyperoxia, normocarbia, and cerebral
edema reduction have beneficial effects on the management
of hypoxic-ischemic brain injury (HIBI) [8–12]. However,
systematic reviews about the individual management of brain
injury after CA are lacking. This review highlights the patho-
genesis of secondary brain damage (Fig. 1) and the correspond-
ing individual management objectives (Table 1).

2. Brain damage after CA

2.1 HIBI
With the interruption of cerebral blood flow (CBF), brain
tissue hypoxia occurs, anaerobic glycolysis and lactic acid
production increase, adenosine triphosphate (ATP) production
ceases, and stored ATP is rapidly consumed [13, 14], resulting
in the impairment of the ATP-dependent ion pump in the cell
membrane [15]. Subsequent intracellular Na+ accumulation
results in cytotoxic edema, intracellular Ca2+ overload leading
to activation of lyase activity [16], disruption of mitochondrial
membrane integrity, irreversible oxidative damage, and loss
of ATP production, finally resulting in cell death [17, 18].
Ischemic injury also promotes the release of glutamate from
synaptic terminals, activating N-methyl-D aspartic acid and
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FIGURE 1. Pathophysiological mechanism of hypoxic ischemic brain injury after cardiac arrest. Abbreviations: ATP:
adenosine triphosphate, Glu: glutamate, NMDA: N-methyl-D aspartic acid, BBB: blood brain barrier, ROS: reactive oxygen
species, RNS: reactive oxide species.

causing further influx of Ca2+ into cells, thus exacerbating
calcium overload [19]. The excitatory neurotransmitter glu-
tamate also activates destructive enzymes (lipase, protease,
and nuclease) that damage nerve tissue [20, 21], resulting in
neuronal death.
Secondary injury results from cerebral vascular dysfunction

and reperfusion injury after ROSC. After the ischemic injury,
vascular endothelial injury [22] and brain autoregulation disor-
der [23] prevent the recovery of cerebral perfusion after ROSC.
One study introduced the concept of “no reflow” [24]. With
the inflow of blood flow, the presence of large numbers of
white blood cells causes increased peroxide and inflammatory
reaction, increased production of free radicals (superoxide,
nitric oxide, and peroxynitrate), further release of glutamate
and increased Ca2+ overload, and apoptosis induction due to
peroxide and inflammatory damage [25, 26].

2.2 CBF, cerebral autoregulation, and
cerebral edema

Cerebral perfusion pressure (CPP) is the driving force of CBF.
CPP is defined as the difference between the MAP and the
intracranial pressure (ICP) [27]. When the MAP fluctuates
within a certain range (60–150 mmHg), the brain has an innate
ability to maintain stable CBF through vasoconstriction or va-
sodilation (i.e., brain autoregulation) [28]. Owing to the rigid
encasement of the brain, abnormal increases in the volume of
any component in the brain cavity may lead to ICP elevation.
Cerebral perfusion after resuscitation is characterized by

early hyperemia, followed by hypoperfusion and restoration of

normal blood flow [29]. Early congestion results from vascular
paralysis caused by the accumulation of acidic metabolites
after transient ischemia. Thereafter, diffuse cerebrovascular
inflammation, intravascular microthrombus formation [30],
perivascular cerebral edema, and dysfunctional nitric oxide
signaling lead to increased vascular resistance and decreased
CBF [24]. During this critical period, hypotension, especially
blood pressure below the lower limit of autoregulation, may
further aggravate the ongoing cerebral ischemia and secondary
injury [31]. In patients hospitalized after CA in one study,
the mean flow velocity in the middle cerebral artery gradually
returned from low to normal at 48 h after admission [32].
Initially, Nishizawa et al. [33] demonstrated a linear

relationship between MAP and CBF, suggesting complete
dysfunction of cerebral autoregulation after CA. Transcranial
Doppler sonography (TCD) monitoring of the middle cerebral
artery flow rate and near-infrared spectroscopy (NIRS)
monitoring of cerebral regional oxygen saturation (rSO2)
can reflect changes in CBF. Recently, several studies on
the relationship between CBF and MAP after CA suggested
that the cerebral autoregulation may remain intact, but with a
narrowed and upward-shifted intact zone (MAP range, 80–120
mmHg) [23, 34, 35]. These studies demonstrated that MAP
should be maintained at a level higher than the commonly
accepted values to ensure cerebral perfusion [23].
Cerebral edema, which can predict poor neurologic out-

comes, can be detected in patients after CA using computed
tomography (CT) or magnetic resonance imaging (MRI) [36].
Cerebral edema after CA has two types: ionic edema and
vasogenic edema [37]. These two pathologic processes can
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TABLE 1. Objectives of individualized management of ischemic hypoxic brain injury.

Indicators Target Meaning

Therapeutic
hypothermia

Maintain 32–36 ◦C for 24 h after
the arrest, actively avoid fever.

Hypothermia can reduce oxygen consumption, reduce the
production of inflammatory mediators, excitatory

neurotransmitters and free radicals.

Pay attention to complications such as tremor,
immunosuppression and coagulation disease.

MAP

MAP ≥65 mmHg is recommended,
preferably 80–100 mmHg to

optimize perfusion. Brain oxygen
monitoring is used to determine

MAPOPT .

The brain autoregulatory heterogeneity and MAP
autoregulatory regions shift to the right after CA.

MAPOPT can be measured by rSO2, and MAPOPT can
increase brain tissue oxygenation, but the neuroprotective effect

of MAPOPT needs further confirmed.

FiO2

Titration of FiO2 to maintain
SpO2 >94% of the lowest value
after ROSC, avoiding exposure to

PaO2 >300 mmHg.

Hypoxia should be avoided after CA, but hyperoxia will
promote the generation of free radicals and DNA damage, cause
cerebral vasoconstriction, reduce cardiac output, aggravate

nerve cell damage, reduce cerebral oxygen transport.

It is feasible to titrate oxygen concentration according to SpO2.

PaCO2

In mechanically ventilated patients,
PaCO2 is controlled at 35–45 mmHg,

allowing mild hypercapnia
(PaCO2 50–55 mmHg).

Cerebrovascular response to PaCO2 persist after CA.

Normocarbia is associated with good prognosis, mild
hypercapnia can improve cerebral oxygen delivery, and the
prognostic effect of targeting mild hypercapnia remains to be

further studied.

Cerebral edema
Monitor cerebral edema (CT, MRI)
and ICP (invasive and non-invasive),
Targeted treatment to improve edema.

GWR <1.1, ADC <650 × 10−6 mm2/s, ICP >20 mmHg is
associated with poor prognosis.

Aquaporin-4, MMP-9 and SUR1-TRPM4 are feasible targets
for improving edema.

Abbreviations: MAP: mean arterial pressure; MAPOPT : optimal MAP; CA: cardiac arrest; rSO2: cerebral regional oxygen
saturation; FiO2: fraction of inspired oxygen; SpO2: oxygen saturation; ROSC: restoration of spontaneous circulation; PaO2:
arterial partial pressure of oxygen; PaCO2: arterial partial pressure of carbon dioxide; CT: computed tomography; MRI:
magnetic resonance imaging; ICP: intracranial pressure; GWR: gray matter/white matter ratio; ADC: apparent diffusion
coefficient; MMP: matrix metalloproteinases; SUR1-TRPM4: sulfonylurea receptor 1/transient receptor potential melastatin
4.

overlap, and their clinical distinction from each other is chal-
lenging. Ionic edema results from cerebral ischemia and hy-
poxia. The osmotic gradient formed by intracellular Na+
and Ca2+ accumulation causes interstitial water to flow into
the cells, resulting in cellular edema [38, 39]. Meanwhile,
increased interstitial osmotic pressure drives the outflow of
intravascular fluid and causes interstitial edema [38, 39]. Vaso-
genic cerebral edema is a consequence of damage to the blood-
brain barrier (BBB). Ischemia and reperfusion injury leads to
dysfunction of the BBB cell components and disruption of
the tight connections between endothelial cells. The increase
in permeability across the capillary allows for an increased
flow of protein-rich plasma driven by the hydrostatic gradi-
ent between the intravascular and extracellular spaces [37].
Aquaporins are membranes that assist in the passive transport
of water [40]. Evidence exists for the role of aquaporin-4 in
both edema formation and clearance in models of CA [41, 42].
Matrixmetalloproteinases (MMPs), activated by inflammatory
mediators after ischemia/reperfusion injury, are responsible for

the degradation of the extracellular matrix and play a role in the
loss of BBB function and the formation of vasogenic edema
[43, 44]. The sulfonylurea receptor 1/transient receptor poten-
tial melastatin 4 (SUR1/TRPM4) channel regulated by SUR1 is
a critical mediator of cerebral edema formation. ATP depletion
after hypoxia leads to increased expression of SUR1/TRPM4
in the central nervous system, which promotes the influx of
Na+ into cells and the destruction of the BBB, leading to the
formation of ionic and vasogenic edema [45, 46].

Therefore, maintaining cerebral perfusion, maintaining
brain autoregulation, and reducing cerebral edema are feasible
goals to improve the prognosis of HIBI.

3. Objectives of individualized
management of HIBI
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3.1 TH
TH or target temperature management (TTM) has been shown
to prevent or relieve HIBI and has become the standard of
care for comatose patients who survived CA [10]. Hypother-
mia plays a neuroprotective role through various mechanisms.
Cerebral metabolism is reduced by 5–10% for every 1 ◦C
decrease in the core body temperature, thus reducing oxy-
gen consumption and CBF and preventing cerebral edema
[47]. In addition, hypothermia can inhibit cell apoptosis and
mitochondrial dysfunction, as well as reduce the production
of inflammatory mediators, excitatory neurotransmitters, and
free radicals [47, 48]. However, a persistently low tempera-
ture can cause adverse reactions such as immunosuppression,
coagulation disease, arrhythmia, electrolyte disturbance, and
hemodynamic disturbance. Therefore, the advantages and
disadvantages of TH should be considered, and the process of
low temperature induction and rewarming should be closely
monitored [48]. Nevertheless, the optimal timing of TH ini-
tiation, target temperature, maintenance time, and reheating
method remain controversial.

3.1.1 Timing of TH initiation
Although the optimal timing of initiating TTM and achieving
the target temperature remains unclear, the consensus is to
start cooling as soon as possible after the arrest. Animal
studies have shown that shortening the time to TH initiation
can lead to a better neurologic prognosis [49–52]; however,
the results of studies on the optimal timing in humans have
been inconsistent. Two studies by Mooney et al. [53, 54] have
shown that delayed TH initiation after CA increases the risk of
neurologic deterioration and death. In contrast, Haugk et al.
[55] found that a shorter time to achieve the target temperature
was associated with unfavorable neurologic outcomes. This
raises the question of whether intra-arrest TH (IATH) improves
prognosis. A systematic review of 23 animal studies and 5
clinical studies concluded that IATH improved survival and
neurologic outcomes compared with maintenance of normal
body temperature or the application of routine hypothermia
[56]. However, some randomized controlled trials (RCTs)
showed that prehospital TH only decreased body temperature
at hospital arrival and did not improve the survival rate and
neurologic outcome of patients with OHCA [57–59], whereas
the prehospital administration of cold intravenous solution
increased the incidence of re-arrest and pulmonary edema [58].
A recent large multicenter RCT confirmed that prehospital
transnasal evaporative intra-arrest cooling did not improve
the 90-day survival rate and neurologic outcomes of patients
with OHCA compared with routine cooling after admission
[60, 61]. Although evidence supporting the benefit of starting
prehospital TH before ROSC is lacking, this method is safe and
facilitates the application of TTM in hospitals [62].

3.1.2 Target temperature
The American Heart Association (AHA) recommends the ap-
plication of TTM to all comatose adult patients after CA, with
a target temperature between 32 ℃ and 36 ℃, maintained
for 24 h after the arrest [63]. Two RCTs published in 2002
reported that the TH (32–34 ℃) group showed better neu-

rologic outcomes than the normal body temperature group
[64, 65] and fever was not prevented in the normal body
temperature group, thus potentially exposing the patients to
the harmful effects of hyperthermia. A large RCT study in
2013 challenged this result and demonstrated that maintaining
TTM at 36 ◦C yielded a similar prognosis to that observed
with TTM at 33 ◦C, without any difference in adverse effects
[66]. Two meta-analysis studies suggested that TH (32–35
◦C) does not affect the mortality rate or neurologic outcome
in post-arrest survivors [67, 68]. A recent meta-analysis of 10
RCTs suggested that mild (35–36 ◦C), moderate (33–34 ◦C),
or deep hypothermia (31–32 ◦C) may not improve the survival
and functional outcomes of patients after OHCA [69]. Studies
on the effects of therapeutic hypothermia TH on neurologi-
cal neurologic outcomes in survivors after CA have reported
mixed inconsistent results, which may stem from differences
in TTM implementation. The implementation of TTM should
be standardized to determine the optimal target temperature for
improving the neurologic prognosis of patients.

3.1.3 Maintenance time
Current recommendations state that the TTM duration should
be at least 24 h and fever should be avoided within 48 h of CA.
These recommendations were primarily based on two classic
TTM tests, in which patients were cooled for an average of 24 h
[64, 66]. Observational trials have also shown that the optimal
duration for improvement is 18–24 h [70–72]. In 2017, a large
multicenter RCT demonstrated that TTM (33 ◦C) maintained
for 48 h, compared with 24 h, did not improve the prognosis
of the nervous system at 6 months, and prolonged hypothermia
increased the risk of adverse reactions [73].

3.1.4 Cooling methods
Traditional cooling methods include the application of cold in-
travenous fluids, ice packs, water circulation blankets, and air
circulation blankets. More modern methods include the use of
water-circulating gel-coated pads and intravascular catheters
that allow rapid cooling and precise temperature control [74,
75]; however, these methods are associated with increased
complications of hypothermia. Transnasal evaporative cooling
is a new cooling method used to induce the hypothermia stage
of TTM therapy [76, 77]. At present, evidence is insufficient
to recommend any particular cooling method. Therefore, the
suitable cooling method should be selected according to the
patient’s condition and the hospital’s facilities.

3.1.5 Rewarming rate
The European Resuscitation Council recommends a warming
rate of 0.25–0.5 ℃/h during the rewarming process of patients
receiving TH treatment after CA [78]. Rapid warming may
lead to electrolyte abnormalities (e.g., hyperkalemia), cerebral
edema, seizures, and other problems. A retrospective cohort
study of 128 patients with CA reported that neither the re-
warming mode (active or passive) nor the rewarming speed
(≥ 0.5 ◦C/h or<0.5 ◦C/h) after TH had any effect on prognosis
[79]. However, a prospective cohort study in Japan increased
the rewarming temperature very slowly, by 1 ℃ every day,
and the results showed that a longer rewarming duration was
significantly correlated with the prognosis of neurologic func-
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tion in patients with OHCA and was an independent predictor
of a good prognosis [80]. Therefore, the effect of a slower
rewarming rate on the prognosis of neurologic function and
the adverse effects of prolonged hypothermia warrant further
investigations.

3.1.6 Sedation and suppression of shivering
Shivering is a physiologic response of the whole body to an
increase in body temperature and is caused by the contraction
of muscles when the core temperature is lowered. Shivering
can delay reaching the target temperature and influence the
effects of TH. Therefore, shivering should be controlled when
performing TTM. Full sedation should be maintained during
TTM. In general, routine use of sedatives (fentanyl, propofol,
or benzodiazepines) can control shivering [81]. To inhibit shiv-
ering, titration of sedatives is clinically recommended rather
than using the standard doses [63]. If high doses of sedatives
do not control shivering, neuromuscular blockademay be used;
however, attention should be paid to electroencephalogram
monitoring to prevent masked epileptic seizures [82]. Non-
pharmacologic methods of skin counterwarming include the
application of warm blankets and increasing the room temper-
ature [83–85]. As skin temperature accounts for approximately
20% of the tremor threshold, increasing the skin temperature
can reduce tremors without affecting the core temperature [83].

3.2 MAP
Hypotension after CA can aggravate secondary brain injury,
and studies have shown that increasing the MAP can improve
the neurologic prognosis [86]. The AHA guidelines recom-
mend a MAP threshold of ≥ 65 mmHg [63], preferably 80–
100 mmHg, to optimize cerebral perfusion. The heterogeneity
of brain autoregulation and the application of automatic brain
monitoring technology drive the development of brain resus-
citation techniques toward individualized directions. TCD has
been used to evaluate the middle cerebral artery blood flow in-
dex, and cerebral autoregulation curves of CBF andMAP have
been established, which confirmed the right shift of the MAP
autoregulation region (80–120 mmHg) and the heterogeneity
of autoregulation [23]. However, the wide application of TCD
was limited by the failure of long-term continuous monitoring.
Recently, NIRS monitoring has attracted wide attention, and
the relationship between MAP and rSO2 can be used as a
noninvasive parameter for assessing brain autoregulation. The
correlation coefficient between MAP and rSO2 is called cere-
bral oximetry index (COx). A positive COx value represents
normal self-regulation [87], whereas a negative or close to
zero COx value represents complete autoregulation [87]. After
mapping the COx (Y-axis) relative to the MAP range in each
patient, a U-shaped curve can be generated, and the lowest
point of the curve corresponds to the optimalMAP (MAPOPT )
for each patient. In a prospective study using NIRS to evaluate
MAPOPT , a COx and MAP U-shaped curve was drawn and
the MAPOPT was identified (average, 75 mmHg) in 19 of
20 patients with CA, demonstrating the feasibility of using
cerebral oxygen saturation (SPO2) to determine the MAPOPT

after CA [88]. In 2019, Sekhon et al. [11] prospectively
evaluated the MAPOPT in patients after CA by using the pres-

sure reactivity index (PRx), defined as the Pearson correlation
coefficient between ICP and MAP, and reported that perfusion
near the MAPOPT was associated with increased oxygenation
of brain tissue. Subsequently, Hoiland et al. [89] compared
the MAPOPT based on COx and that based on PRx, which
showed a lack of consistency. A meta-analysis study found no
consistent association between targeted MAP and neurologic
function, which may be due to the difference in automatic
adjustment monitoring methods. Further studies are needed
to evaluate the clinical efficacy of brain resuscitation under
MAPOPT guidance in alleviating secondary ROSC injuries
and improving the neurologic prognosis of patients [90].

3.3 Fraction of inspired oxygen (FiO2)

Hypoxia should be avoided in patients after CA. The AHA
recommends the use of the highest concentration of oxygen
during cardiopulmonary resuscitation and titration of FiO2 to
the minimum value required to maintain an SPO2 of >94%
after ROSC [63]. Theoretically, high oxygen levels increase
the dissolved oxygen content in blood, which is beneficial
to achieving the combination of sufficient hemoglobin oxy-
genation and accelerated oxygen diffusion. However, the
harms of high oxygen levels, including the promotion of free
radical production [91], lipid peroxidation, DNA damage, and
ultimately nerve cell dysfunction, are ignored [92]. Hyperoxia
also causes cerebral vasoconstriction, decreased cardiac out-
put [93], and pulmonary dysfunction [94], thus reducing the
amount of oxygen delivered to the brain. A meta-analysis of
animal experiments investigating the impact of high oxygen
levels on the prognosis after ROSC showed that compared
with low oxygen levels, inhaled 100% oxygen was associated
with neurologic deterioration. However, the studies differed in
terms of factors such as the timing and dose of hyperoxia and
whether hyperoxia was combined with TH [95]. Furthermore,
the results of animal models are not necessarily applicable
to humans. Clinical studies on hyperoxic therapy in patients
after CA have yielded inconsistent results. A arterial partial
pressure of oxygen (PaO2) of > 300 mmHg should also be
avoided after ROSC, although no study has proved the adverse
effects of hyperoxia in patients after CA. A retrospective mul-
ticenter cohort study in 6326 patients with nontraumatic CA
demonstrated that hyperoxia (PaO2 ≥ 300 mmHg) after re-
suscitation was associated with increased mortality [96]. Two
meta-analysis studies identified that hyperoxia (PaO2 >300
mmHg) was associated with increased in-hospital mortality
[97, 98]. In a recent prospective study, Roberts et al. [99]
reported that high oxygen levels in the first 6 h after ROSC
(PaO2 >300 mmHg) was associated with poor neurologic
function. In contrast, another retrospective multicenter study
demonstrated that hyperoxia (PaO2 ≥ 300 mmHg) was not
associated with mortality within the first 24 h of intensive
care unit admission, after controlling for confounders such as
disease severity [100]. Oh et al. [101] reported that high
oxygen levels (PaO2 ≥ 300mmHg)within 2 h after ROSCwas
not associated with the discharge survival rate. In a prospective
study, Vaahersalo et al. [102] calculated the proportion of time
spent by each patient in various oxygen level zones based on
the average PaO2 within 24 h after admission. Their results
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showed that the proportion of time spent in the high PaO2

zone (>225 mmHg) was not associated with better neurologic
outcomes [102]. At present, the optimal oxygen level after CA
remains uncertain. Two prospective studies have confirmed
the feasibility of titrimetric oxygen supply according to SPO2

[9, 103], and further RCTs are needed to determine the optimal
oxygen supply strategy for patients with CA.

3.4 Partial pressure of carbon dioxide in the
artery (PaCO2)
According to current clinical studies, the PaCO2 during me-
chanical ventilation in patients after CA should be controlled
at 35–45 mmHg (or at an end-tidal CO2 of 30–40 mmHg) and
mild hypercapnia (PaCO2 = 50–55 mmHg) may be allowed.
Cerebrovascular responses to PaCO2 persist after CA [32].
The PaCO2 level can directly affect cerebrovascular resistance
and CBF, and hypocapnia (PaCO2 <35 mmHg) induced by
hyperventilation induces cerebrovascular vasoconstriction and
decreases CBF by approximately 2–3% for every 1 mmHg
decrease in PaCO2 [104], thus exacerbating ischemic injury.
Hypercapnia (PaCO2 >45 mmHg) can cause cerebral hyper-
emia, exacerbate ICP, and reduce CBF [105]. However, mild
hypercapnia (PaCO2= 50–55 mmHg) may lead to mild cere-
brovascular dilatation, thereby improving CBF and oxygen
delivery and reducing neuronal injury [106, 107].
A large multicenter retrospective study found that hypocap-

nia (PaCO2 <35 mmHg) was significantly associated with in-
hospital mortality compared with normocapnia [108]. A ret-
rospective study involving 9186 patients with OHCA demon-
strated that the first 24 h of hypercapnia after ROSC (PaCO2

>50 mmHg) was associated with increased in-hospital mor-
tality, whereas hypocapnia (PaCO2 <30 mmHg) was not as-
sociated with this outcome [109]. A systematic review of
nine studies demonstrated that normocarbia (PaCO2 = 35–45
mmHg) was associated with a higher survival rate and better
neurofunctional status at discharge compared with hypocapnia
or hypercarbia [110]. A prospective study confirmed the
feasibility of targeting PaCO2 and PaO2 therapy in patients on
post-ROSC mechanical ventilation and found higher cerebral
oxygen saturation in patients with high-normal PaCO2 (5.8–
6.0 kPa, approximately 43.5–45 mmHg) but observed no im-
provement in neuron-specific enolase levels [111]. Another
prospective study calculated the mean PaCO2 in the first 6 h
after ROSC and reported that the relationship between PaCO2

and nervous system prognosis showed an inverted “U” shape,
with mild to moderate hypercapnia (mean PaCO2 of 51 mmHg
in patients with metabolic acidosis and 68 mmHg in normal
patients) being associated with a high likelihood of a good
nervous system prognosis [12]. In most cases, PaCO2 is
elevated after ROSC; however, this situation corrects itself
during the first hour, without a need to speed up the process
[112]. Furthermore, the actual PaCO2 of patients may be
slightly lower than the PaCO2 measured in the laboratory at 37
◦C owing to the temperature correction during the treatment
with induced hypothermia. Therefore, we believe that mild
hypercapnia after ROSC is permissible. Future RCTs are nec-
essary to further determine whether targeting mild hypercapnia
(PaCO2 = 50–55 mmHg) improves the prognosis after ROSC

[12].

3.5 Cerebral edema
Cerebral edema is an important cause of secondary brain injury
after CA and must be carefully monitored to reduce the risk
of comatose and death in patients after ROSC [8]. Diffuse
cerebral edema is common after CA. On CT, diffuse cerebral
edemamanifests with effacement of the cerebral sulci and gyri,
as well as loss of the normal differentiation between the gray
and white matters. However, these findings are dependent on
the observer and are especially difficult to detect in the early
stages [113]. By measuring the relative attenuation of gray
and white matters in various regions of the brain, the gray
matter/white matter ratio (GWR) can be calculated to quantify
edema. In this way, cerebral edema can be detected as early as
1 h after CA. Clinical studies have confirmed the correlation
between GWR measurements and prognosis. The studies
reported that GWR <1.2 was a predictor of poor prognosis in
patients after CA and GWR <1.1 predicted a mortality rate
of nearly 100% [114–116]. These values remained consistent
even in patients treated with TH. MRI can detect microscopic
factors associated with edema formation. Cellular edema
manifests as increased signal intensity on diffusion-weighted
imaging and decreased signal intensity on apparent diffusion
coefficient (ADC) imaging [117]. Conversely, edema of pri-
marily vasogenic originmanifests as an increase in ADC signal
intensity. The presence of both vasogenic and cellular edema
can result in significantly normal ADC values, a phenomenon
known as “pseudonormalization”. Several studies have shown
that reduced ADC values (<650 × 10−6 mm2/s) of quanti-
tative edema are associated with a poor prognosis [118–120].
The optimal time window to perform ADC imaging to predict
poor outcomes was reported to be between days 2 and 5 after
CA [121, 122]. The early instability of patients after ROSC
limits the early application of MRI. Moreover, pseudorthodon-
tics may reduce the sensitivity of MRI in patients with CA
at a later time point [37]. However, no unified standard
currently exists for the quantitative measurement of CT and
MRI parameters. Therefore, prospective multicenter studies
with sufficiently large sample sizes are needed to determine
specific imaging parameters or abnormal spatial and temporal
patterns.
ICP is another clinical indicator for monitoring cerebral

edema. The indications for ICP monitoring can be determined
using predictive models, especially in patients presenting with
initially unremarkable cranial CT findings after CA [123, 124].
Increased ICP can reduce the CPP and induce cerebral hernia
[125]. Studies have demonstrated a strong association between
high ICP (>20 mmHg) and increased mortality in patients
with severe craniocerebral trauma [126]. At present, the most
commonly used and gold standard method for ICP monitoring
in clinical practice is intraventricular intubation; however, it
is associated with a high risk of bleeding and infection [127].
In recent years, noninvasive ICP monitoring methods such as
TCD, optic nerve cord diameter (ONSD) measurement, and
pupillary measurements have been introduced [128–130]. A
retrospective study concluded that TCD and ONSD measure-
ment provide results consistent with those of invasive ICP
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monitoring [131]. The prospective study by Chiara et al. [132]
also confirmed that ONSD is a good predictor of ICP and can
be used to identify patients with severely high cranial pressure.
We believe that the usefulness and operability of noninvasive
ICP monitoring merit further promotion in clinical practice.
Finally, preclinical models examining therapies that target

key pathways (aquaporin-4, MMP-9, and SUR1/TRPM4) in
post-arrest edema formation showed improved functional out-
comes after CA [44, 128, 133]. The management of cerebral
edemamay be a feasible target to ameliorate ischemic damage;
however, this needs to be confirmed by further clinical studies.

4. Conclusion

HIBI after CA can seriously affect the prognosis of patients.
The duration of CA and individual differences in tolerance to
hypoxia determine the complexity of the disease after ROSC.
This review discusses the mechanism of ischemic–hypoxic
brain damage after CA and introduces relevant monitoring
methods to explore the individual management objectives of
reducing brain damage, such as TH, maintaining cerebral per-
fusion (MAPOPT ), titrating the oxygen level, allowing mild
hypercapnia, and monitoring of cerebral edema. The develop-
ment of an appropriate post-CA brain protection scheme for
patients, with comprehensive consideration of various factors,
is still necessary.
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