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Abstract

To develop an XGBoost model to predict the occurrence of acute lung injury (ALI)
in patients with acute pancreatitis (AP). Using the case database of Xinhua Hospital
affiliated to Shanghai Jiaotong University School of Medicine, 1231 cases suffering from
AP were screened, and after 137 variables were identified, the clinical characteristics
of the samples were statistically analyzed, and the data were randomly divided into
a training set (75%) to build the XGBoost model and a test set (25%) for validation.
Finally, the performance of the model was evaluated based on accuracy, specificity,
sensitivity, and subject characteristics working characteristic curves. The model
performance is also compared with that of three other commonly used machine learning
algorithms (support vector machine (SVM), logistic regression, and random forest).
The age and laboratory tests of patients with AP combined with ALI differed from
those of patients without combined acute lung injury. The area under the receiver
operating characteristic (ROC) curve of the test set after model evaluation was 0.9534,
the specificity was 0.7333, and the sensitivity was 0.7857, with arterial partial pressure
of oxygen, bile acid, aspartate transaminase, urea nitrogen, and arterial blood pH as its
most important influencing factors. In this study, the XGBoost model has advantages
compared with other three machine learning algorithms. The XGBoost model has
potential in the application of predicting acute lung injury after acute pancreatitis.
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1. Introduction

Acute pancreatitis (AP) is a common digestive emergency
and can be divided into mild acute pancreatitis (MAP) and
severe acute pancreatitis (SAP), MAP patients have a good
prognosis after treatment, while about 10%—-20% of patients
have SAP, whose disease progresses rapidly and variable,
and the death rate can be as high as 20%-30% [1]. Among
them, systemic inflammatory response syndrome (SIRS) in the
early stage of the disease process leads to multi-organ failure
such as acute lung injury (ALI), acute renal failure, shock,
etc. can account for about 60% of the causes of death, and
complications such as infection in the middle and late stages
of the disease process account for about 40% of deaths [2].
Acute lung injury is a common complication in the course of
SAP, with approximately 30% of patients developing acute
respiratory distress syndrome (ARDS) [3]. Clinical treatment

of acute lung injury has no specific drugs, most use mechanical
ventilation, but the effect is limited, but at the same time easy to
complicate ventilator-related lung injury, further aggravating
the patient’s condition [4]. Therefore, it is very important to
predict the occurrence of ALI in AP patients in clinical work
so as to guide the treatment. In recent years, the application
of machine learning technology in the medical field has been
intensified, and it has unique advantages in handling big data,
high-dimensional data, and conducting prediction studies [5].
This study explores the XGBoost model to predict concurrent
ALI in AP patients to provide some ideas for the diagnosis and
treatment of the disease in clinical practice.

2. Materials and Methods
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2.1 Data Acquisition and Ethics

The data were obtained from our hospital, using our case
information database, in which information involving patient
privacy has been hidden by the database system itself. A
total of 1231 AP cases from 2015 to 2020 were screened.
Screening criteria: all patients had AP as the primary diagno-
sis. Exclusion criteria: those with missing arterial blood gas
examination.

2.2 Diagnostic criteria

Diagnostic criteria of AP: It meets the relevant diagnostic
criteria of AP in the “Guidelines for the diagnosis and treatment
of acute pancreatitis in China (2021)” compiled by the Pan-
creatic Surgery Group of the Chinese Medical Association’s
Surgery Branch in 2021 [6]: (1) persistent pain in the upper
abdomen. (2) Serum amylase and/or lipase concentration
at least 3 times higher than the upper limit of normal. (3)
Abdominal imaging results show imaging changes consistent
with acute pancreatitis. Acute pancreatitis can be diagnosed by
meeting two of the above three criteria. Diagnostic criteria of
ALI: The diagnostic criteria related to ALI in the Guidelines
for the diagnosis and treatment of acute lung injury/acute
respiratory distress syndrome (2006) compiled by the Critical
Care Medicine Branch of the Chinese Medical Association in
2006 [7]: (1) acute onset; (2) oxygenation index (PaOs/oxygen
concentration (FiO2)) <200 mmHg (1 mmHg = 0.133 kpa)
(regardless of the level of positive end-expiratory pressure
(PEEP)); (3) orthopantomograph showing patchy shadows in
both lungs; (4) pulmonary artery pressure <18 mmHg, or no
clinical evidence of increased left atrial pressure. If PaO5/FiOo
<300 mmHg and other criteria mentioned above were met, the
diagnosis of ALI was made.

2.3 Selection and treatment of independent
variables

Combining clinical experience with relevant paper studies [8,
9], 137 potential variables associated with acute pancreatitis
and acute lung injury were initially screened. The 10 most
significant influencing factors were finally established using
the XGBoost classifier, which included age and laboratory
tests (Table 1).

2.4 Modeling

An XGBoost model was built for machine learning with the
open-source Python software (version 3.7, produced by Python
Software Foundation). The data were randomly divided into a
training set (75%) and a test set (25%), and the training set was
subjected to a 10-fold cross-validation method to determine the
optimal parameters (max-depth = 9, learning-rate = 0.3). The
test set was used to evaluate the model performance.

The other dataset splitting strategy using 5-fold cross-
validation method was applied to show whether the model
performance was stable (Table 2).
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2.5 Evaluation of the model

The models were evaluated after they were built to verify their
suitability for application in the detection of diseases. In this
study, the performance of the model was evaluated based on
the calculation of accuracy, specificity, sensitivity, and receiver
operating characteristic (ROC) curves.

2.6 Model Comparison

In addition, we built common machine learning algorithms
such as SVM, logistic regression, and random forest to com-
pare their evaluation results with the XGBoost model.

2.7 Statistical Methodology

Statistical analyses were performed according to the following
formulas:

TP

Sensitivity = TP+ FN (D
Precision = TPi—iPFP ()
Speci ficity = % 3)
Accuracy = 75— EJCJI; i §g+ FN @
Pl 2 x Sensitivity X Precision 5)

Sensitivity + Precision

Where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

ROC curve analysis and the area under the curve (AUC)
were calculated using the Scikit-learn package to compare the
performance of each model.

3. Results

3.1 Basic clinical information of the patient

A total of 1231 patients with acute pancreatitis were included
in the study, of which a total of 125 patients, or 10.15% of all
patients, had combined lung injury.

3.2 XGBoost model results

Fig. 1 shows the test results of XGBoost model, out of 308
samples, 294 samples were correctly predicted, and its accu-
racy rate was 95.45%.

3.3 Model evaluation and variable weights

Table 3 shows the comparison of the performance of the four
machine learning models, and it can be seen that the AUC
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TABLE 1. Description of 10 indicators related to ALI

PaO, Bile AST Urea pH  Creatinine GFR Albumin  Na Age ALI
acid nitrogen (MDRD)
count 1231 1231 1231 1231 1231 1231 1231 1231 1231 1231 1231
mean  6.86 26.38 7.68 3.75 3.77 53.72 98.63 31.78 100.80 53.90  0.10
std 6.96 58.19 9.03 3.41 3.67 27.27 69.87 12.31 60.93  21.95 0.30
min 0.70 0.00 0.00 0.50 0.06 22.00 14.17 4.83 3.29 1.00 0.00
25% 0.70 1.10 3.00 0.50 0.06 34.00 58.96 31.00 329  38.00 0.00
50% 3.00 2.70 7.00 4.00 7.13 53.00 97.32 35.80 137.70 58.00  0.00
75%  12.10 12.20 10.00 5.60 7.40 69.00 127.20 39.40 140.00 69.00  0.00
max 3041 441.50 140.00 41.10 7.58 357.00 574.79 51.80 147.00 101.00 1.00
AST: Aspartate Transaminase; GFR: Glomerular filtration rate; MDRD: Modified diet in renal disease.
TABLE 2. 5-fold cross-validation results using the XGBoost method.
XGBoost Accuracy F1 Precision Sensitivity Specificity AUC
mean 0.957 0.748 0.896 0.648 0.992 0.953
std 0.014 0.094 0.052 0.120 0.003 0.015
AUC: area under the curve.
TABLE 3. Comparison of models’ performance on ALI detection.

Algorithm Accuracy F1 Precision Sensitivity Specificity AUC
XGBoost 0.955 0.759 0.733 0.786 0.978 0.953
SVM 0.886 0.546 0.447 0.700 0.906 0.856
Logistic 0.883 0.514 0.432 0.633 0.910 0.863
Regression
Random Forest 0.945 0.712 0.724 0.700 0.975 0.945

AUC: area under the curve; SVM: support vector machine.

values of all four machine learning models are greater than 0.8,
among which the AUC value of XGBoost model (0.9534) is the
highest (Fig. 2), the precision is 0.7333, and the sensitivity is
0.7857, all of which are higher than the other three algorithmic
models.

The variable importance ranking of the XGBoost model is
shown in Fig. 3, where arterial partial pressure of oxygen,
bile acid, glutamic oxalacetic transaminase, urea nitrogen, and
arterial blood pH are the top five important variables heat map
of the 10 most important influencing factors is shown in Fig. 4.

We also analyzed the distribution of specific cases for each
of the 10 most important influencing factors, as shown in
Fig. 5.

4. Discussion

In this study, an XGBoost model of acute pancreatitis com-
bined with acute lung injury was developed, and a total of 137
indicators were included for the study, and finally the 10 most
important influencing factors were derived, and the model was
assessed to have a good predictive ability.

We have compared performance of the four machine learn-
ing models: XGBoost, SVM, Logistic Regression and Random
Forest. XGBoost, eXterme Gradient Boosting, mainly uses

a parallel Boosting tree and follows the boosting algorithm,
which continuously generates a new tree based on the training
and prediction results of the previous tree. It combines multi-
threading, data compression, and slicing to make the algorithm
as efficient as possible. SVM (support vector machine) is a
binary classification model, which is based on the principle
of finding a decision boundary or hyperplane in the feature
space that maximizes its interval from the training set. Logistic
Regression is essentially a linear classifier, so it does not han-
dle correlation between features well. Although the results are
average, it wins because the model is clear and the probability
science behind it can stand up to criticism. The parameters it
fits represent the impact of each feature on the result. Random
forest can handle high-dimensional data and can obtain feature
importance based on the Information Gain during splitting and
can achieve good results in the case of unbalanced data. In
our study XGBoost model has the best performance in data
learning et analysis.

In recent years, many studies have applied XGBoost models
to process data in medical fields such as genes, drugs, and
diseases [10], demonstrates its high efficiency. In contrast,
there are fewer studies on prediction models for the occurrence
of ALI in AP patients. The final test set of this study showed
an accuracy of 0.9545, an AUC value of 0.9534 for the model
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FIGURE 2. Receiver operating characteristic curve. AUC: area under the curve; SVM: support vector machine.
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predictive ability, a specificity of 0.7333, and a sensitivity of
0.7857, indicating that the established XGBoost model has
better predictive ability. Also, this study compared three other
commonly used machine learning models and considered that
the XGBoost model had better disease detection ability.

This study ranked the importance of variables related to
acute pancreatitis and acute lung injury, in which the first place
was arterial partial pressure of oxygen (PaO3), PaOs reflects
the oxygen content in the body, PaO, is an early and sensitive
indicator to identify acute lung injury and a key indicator to
determine its severity [11], therefore, the monitoring of PaO»
in patients with acute pancreatitis is beneficial to the prevention
and early detection of acute lung injury in clinical practice.

Bile acid (BA) is a substance synthesized by the liver and
secreted via the biliary tract. Aspartate Transaminase (AST) is
an important indicator of whether liver function is impaired,
and these serum chemical indicators can sensitively reflect
pathophysiological changes in the liver or biliary tract. In
China, a major cause of acute pancreatitis is biliary pancre-
atitis, and Polat ef al. [12] concluded that these indicators
have some diagnostic value in biliary pancreatitis. Tran et
al. [13] found that bile acids play an important role in the
pathogenesis of gallstone-induced AP by inducing intracellular
Ca?*t overload. Chen et al. [14] discovered that bile acids
may induce activation of alveolar epithelial cells and lung
fibroblasts, suggesting that bile acids also play a role in acute
lung injury, suggesting that bile acids may be able to play a
predictive role in the early stages of AP combined with ALI.

Urea nitrogen is the main end product of human protein
metabolism, which increases with the decrease of glomerular
filtration rate, and creatinine is an important indicator of renal
function impairment [15]. A large amount of fluid leakage
in AP patients leads to insufficient effective circulating blood
volume, reduced renal perfusion and combined with increased
renal vascular resistance, resulting in acute kidney injury due
to renal ischemia and hypoxia, manifested by an increase
in urea nitrogen and creatinine and a decrease in creatinine
clearance [16]. And insufficient effective circulating blood
volume can aggravate pulmonary inflammation and promote
the development of acute lung injury [17]. Therefore, it is very
necessary to monitor renal function and electrolytes in patients

with acute pancreatitis in clinical practice.

This study also found that hypoalbuminemia was a risk
factor for AP complicating ALI, and the possible mechanism
was that hypoalbuminemia led to a decrease in plasma colloid
osmotic pressure, which aggravated the development of pul-
monary edema and caused lung injury [18].

This study summarizes the importance of various influ-
encing factors from the clinical pattern of acute pancreatitis
complicated by acute lung injury, and the model assessment
has certain accuracy, specificity and sensitivity, which can
play a reference role in clinical diagnosis and treatment and
intervene in the development of the disease to a certain extent.
However, this study still has some limitations, as it is a single-
center study, the sample size included is small, and some
variables were discarded due to a high number of missing
values, which poses a limitation to the study. There is a need to
further increase the sample size and improve the collection of
variable data to obtain a more accurate model. And the results
of the study need to be validated with multicenter and big data.
At the same time, the model contains more variables, which
may lack some practicality in clinical practice, and the model
needs to be further improved and the variables optimized.

5. Conclusions

In conclusion, the XGBoost model has a good predictive ability
for concomitant acute lung injury in patients with acute pancre-
atitis, and can provide some guidance for clinical practice.
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