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Abstract
This study aims to investigate the correlation between hyperintensity on Magnetic
Resonance Imaging-T1weighted imaging (MRI-T1WI) and post-infarction hemorrhagic
transformation (HT) after cerebral infarction (CI) and analyze the influencing factors.
This retrospective study comprised 115 patients diagnosed with cerebral infarction
at our hospital. Their clinical data were collected, and they were then divided
into a hyperintensity and a non-hyperintensity group based on their T1WI image
characteristics. Comparative analysis was performed and the diagnostic value of T1WI
hyperintensity for HT and influencing factors were assessed. Lesions in the 115 cerebral
infarction patients were distributed as follows: 52 in the cerebral cortex, 37 in the basal
ganglia, 14 in the cerebellum, 7 in the thalamus, and 5 in the subcortex. Hyperintensity
on T1WI was observed in 4 cases before treatment, which increased to 27 cases
after treatment, including 16 affecting the cerebral cortex. These hyperintense signals
manifested as spotty, patchy or linear patterns along the gyri. In the basal ganglia, 10
cases exhibited spotty or patchy signals, surrounded by an annular hypointense shadow.
Additionally, 3 cases involved the cerebellum, 1 the thalamus, and 1 the subcortex, all
with spotty or patchy hyperintensities. HT occurred in 17 out of 115 patients (14.78%)
one month after treatment. The diagnostic performance of T1WI hyperintensity for
HT showed sensitivity, specificity, accuracy, positive predictive value, and negative
predictive value of 94.12%, 84.69%, 86.09%, 51.61% and 98.81%, respectively, with
a Kappa value of 0.588. Multivariate logistic regression analysis revealed that age,
atherosclerosis, and infarct size were significant risk factors for T1WI hyperintensity
in cerebral infarction (p < 0.05). Hyperintensity on T1WI in cerebral infarction
primarily correlates with HT and could be a valuable diagnostic marker for HT, with
age, atherosclerosis and infarct size identified as potential influencing factors.
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1. Introduction

Cerebral infarction is a highly prevalent condition in the
middle-aged and elderly population, characterized by an acute
onset and poor prognosis. Statistics indicate that in China, the
incidence rate was approximately 145/100,000 in 2020, with a
prevalence as high as 1700/100,000, representing a significant
threat to the life safety of Chinese residents [1, 2]. Previous
studies have reported that hemorrhagic transformation (HT) is
a common complication in patients with cerebral infarction,
with an incidence ranging from approximately 10% to 49.5%.
HT can be broadly classified into two categories: spontaneous
bleeding and bleeding after treatment. Its pathogenesis is
currently complex and may be closely related to damage to
blood-brain barrier (BBB) integrity caused by inflammation

and oxidative stress following cerebral infarction [3–5].
Imaging examinations play a pivotal role in the diagnosis
and treatment of cerebral infarction. It is well-documented
in literature that magnetic resonance imaging (MRI) offers
several advantages, including excellent soft tissue contrast
and absence of radiation, making it more widely employed
in clinical practice. Conventional MRI findings typically
show hypointensity on T1-weighted images (T1WI) and
hyperintensity on T2-weighted images (T2WI). However,
some patients may also exhibit hyperintensity on T1WI,
which may be closely associated with laminar necrosis,
macromolecular hydration effects and HT [6–8].

This present study was designed to assess the relationship
between T1WI hyperintensity and HT after cerebral infarction
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and its influencing factors to provide evidence-based medical
insights to further clarify the diagnostic value of MRI for HT,
which could help to improve clinical diagnosis and treatment.

2. Materials and methods

2.1 General data
This is a retrospective study conducted on a cohort of 115
patients (67 males and 48 females) diagnosed with cerebral
infarction at our hospital, with age ranging from 37 to 91
years (mean age ± standard deviation: 66.70 ± 10.76 years).
The study inclusion criteria were: A diagnosis of cerebral
infarction based on clinical symptoms, signs and imaging
findings [9]; Age ≥18 years; Admission within 24 hours from
the onset of symptoms; Adherence to treatment guidelines;
Completion of both pre-treatment and post-treatment MRI
scans within a month; Follow-up for at least one month post-
treatment to assess the presence of HT. The exclusion criteria
comprised: (1) Coexistence of intracranial tumors, epilepsy,
traumatic brain injuries, or other cerebral lesions; (2) Cerebral
infarction complicated by cerebral hemorrhage; (3) A history
of previous strokes; (4) Underwent intravascular interventional
therapy; (5) Had incomplete clinical data which might have
affected our study analysis.

2.2 Study method
2.2.1 Baseline data
The collected baseline data comprised gender, age, body mass
index (BMI), smoking history, drinking history, underlying
medical conditions, history of prior cerebral infarction, time
interval from symptom onset to admission, National Institute
of Health Stroke Scale (NIHSS) score at admission, and Trial
of Org 10 172 in acute stroke treatment (TOAST) classification
[9].

2.2.2 MRI findings
These were documented both before treatment and within 1
month after treatment for both study groups. The imaging was
performed using the BRIVOMR355 1.5T magnetic resonance
scanner from GE Company (Boston, MA, USA), and the
findings of interest included the distribution characteristics of
T1WI and T2WI signals. The infarct lesions were delineated
on T2WI images, and the infarct size was calculated at the
section of maximum involvement.

2.2.3 Treatment
Treatment regimens included intravenous thrombolysis, arte-
rial thrombolysis, administration of antiplatelet drugs, antico-
agulant drugs, medications aimed at enhancing circulation and
neurotrophic drugs.

2.2.4 Incidence of HT
The occurrence of HT within 1 month after the procedure was
followed up in both study groups. Diagnosis was established
based on the absence of hemorrhagic lesions on the initial
MRI, followed by the observation of hemorrhagic lesions upon
subsequent MRI examinations. Cases that could not be defini-
tively diagnosed on the MRI were verified through computed

tomography (CT) scans [10].

2.2.5 Data analysis

The patients were categorized into a hyperintensity or a non-
hyperintensity group based on their T1WI image characteris-
tics. Comparative analysis between these two groups was con-
ducted, and the relationship between hyperintensity on T1WI
and HT, as well as its diagnostic value, was assessed using the
Kappa consistency test. Subsequently, factors influencing hy-
perintensity on T1WI were analyzed, and the potential factors
affecting the diagnostic accuracy of hyperintensity on T1WI
for HT were explored.

2.3 Statistical methods

Enumeration data are presented as n (%) and analyzed using
the χ2 test. For measurement data that followed a normal
distribution, they are expressed as x̄ ± s and analyzed using
the independent samples t-test. The relationship between
T1WI hyperintensity and HT, as well as its diagnostic value,
was assessed using the Kappa consistency test. Multivariate
logistic regression was used to analyze the factors influencing
T1WI hyperintensity. Statistical analysis was conducted using
the SPSS (BMI Corporation, Chicago, IL, USA) 25.0 software,
with a significance level set at α = 0.05.

3. Results

3.1 MRI image characteristics of cerebral
infarction and HT

In this study, among the 115 patients diagnosed with cerebral
infarction, the lesion distribution was as follows: 52 in the
cerebral cortex, 37 in the basal ganglia, 14 cases in the cerebel-
lum, 7 cases in the thalamus, and 5 cases in the subcortex. Prior
to treatment, MRI examinations identified 4 cases exhibiting
T1WI. Following treatment, 27 cases displayed hyperintensity
on T1WI, including 16 cases within the cerebral cortex. These
hyperintense signals were characterized by spotty, patchy or
linear patterns along the gyri. Specifically, 10 cases were
located in the basal ganglia, showing spotty or patchy sig-
nals that were encircled by an annular hypointense shadow.
Additionally, 3 cases had lesions in the cerebellum, 1 in the
thalamus, and 1 in the subcortex, all demonstrating spotty or
patchy hyperintensities.

3.2 Diagnostic value of hyperintensity on
T1WI for HT

The outcomes of the 1-month follow-up revealed that among
the 115 patients, 17 cases (14.78%) developed HT. The diag-
nostic sensitivity of T1WI hyperintensity for detecting HT was
94.12% (16/17), while the specificitywas 84.69% (83/98). The
overall accuracy was 86.09% (99/115), with a positive predic-
tive value of 51.61% (15/31) and a negative predictive value
of 98.81% (83/84). The degree of agreement, as indicated by
the kappa value, was 0.588 (Table 1).



108

TABLE 1. Diagnostic value of hyperintensity on T1WI
for HT.

T1WI hyperintensity HT follow-up results
+ − Total

+ 25 6 31
− 1 83 84
Total 17 98 115
T1WI: T1-weighted images; HT: hemorrhagic transfor-
mation.

3.3 Comparison of clinical data between the
hyperintensity group and the
non-hyperintensity group on T1WI
Our analysis revealed significant differences between the
T1WI hyperintense and non-hyperintense groups in terms of
age, drinking history, atherosclerosis, cerebral infarction area,
and thrombolytic therapy (p < 0.05) (Table 2).

3.4 Influencing factors of T1WI
hyperintensity
Multivariate logistic regression analysis demonstrated that age,
atherosclerosis and infarct size were significant risk factors
associated with T1WI hyperintensity in cerebral infarction (p
< 0.05) (Table 3).

4. Discussion

HT in cerebral infarction typically manifests between 36 hours
and 1 month after the onset of the illness. Due to the absence
of standardized diagnostic criteria across various regions, its
statistics in epidemiological reports often vary significantly.
For instance, findings from the French randomized trial in-
dicated that the incidence of HT in endovascular treatment
was 46%, with a symptomatic HT rate of 2.0% [11]. In
addition, the incidence of HT in cerebral infarction patients
fromAsian populations appears to be notably higher compared
to that observed in Europe and the United States. According
to a Chinese multicenter study, the incidence was reported as
49.5%, with symptomatic hemorrhage rates reaching as high as
9.9%, surpassing data reported in Western literature [12, 13].
Imaging technology plays a pivotal role in diagnosing HT in

cerebral infarction. Currently, the most commonly employed
techniques are MRI and CT, with MRI being the preferred
choice for assessing cerebral infarction due to its excellent
soft tissue contrast, ability for multi-parameter imaging, and
quantitative analysis capabilities [14–16]. T1WI hyperinten-
sity is recognized as a distinctive abnormal imaging feature in
the assessment of cerebral infarction. Previous literature has
proposed various causes for T1WI hyperintensity, including
neuronal necrosis [17], gliosis [18] and vascular rupture and
hemorrhage [19]. In cerebral infarction, HT gradually leads
to the breakdown of red blood cells over time, resulting in
methemoglobinemia characterized by paramagnetic features
during the deposition and degradation of hemoglobin. Ad-
ditionally, macromolecular proteins can induce hydration ef-
fects, causing MRI to reveal T1WI hyperintensity [7, 20].

In this study, we conducted a retrospective analysis of MRI
follow-up results from 115 patients diagnosed with cerebral
infarction, which showed that 4 cases exhibited T1WI hyperin-
tensity before treatment, and an additional 27 cases displayed
T1WI hyperintensity 1 month after treatment, resulting in a
total of 31 cases. These hyperintensity signals were predom-
inantly distributed in a patchy, spotty or linear pattern and
were distributed across various brain regions, including 16
cases in the cerebral cortex, 10 in the basal ganglia, 3 in the
cerebellum, 1 in the thalamus, and 1 in the subcortical region.
These findings were consistent with previous literature reports
[21]. Additionally, our study identified 17 patients (14.78%)
diagnosed with HT through 1-month follow-up, a prevalence
lower than what has been reported in epidemiological studies
both in China and internationally, which might have been
attributed to the patient selection criteria used in our present
study. Upon further investigation into the relationship between
T1WI hyperintensity and HT, we determined that the kappa
value signifying agreement between the two variables was
0.588, indicating a moderate level of correlation. When T1WI
hyperintensitywas used for the diagnosis ofHT in patients with
cerebral infarction, the sensitivity and specificity were 94.12%
and 84.69%, respectively, indicating a valuable reference for
clinical diagnosis. The negative predictive value was high
at 98.81%, signifying strong exclusion capabilities for HT.
However, the positive predictive value was relatively lower at
51.61%, mainly due to an increased number of false positives.
This limitation was attributed to the presence of numerous
interfering factors in the assessment of T1WI hyperintensity
for HT diagnosis.
MRI imaging operates on the fundamental principle of ob-

serving the vibrational signal of H+ (protons) within a mag-
netic field. Research has demonstrated that the freedom of
water molecule activity plays a central role in influencing
signal characteristics. Typically, fluids, tumors or infarcted
areas exhibit hypointensity on T1WI. Conversely, when water
molecule activity is restricted, the T1 relaxation time shortens,
leading to hyperintensity [22–24]. However, the pathophys-
iological manifestations of cerebral infarction are intricate,
and various factors, including the location, type and severity
of the infarction, can significantly interfere with the signal
characteristics of T1WI. Furthermore, systemic factors such as
blood pressure, blood composition, blood glucose levels, and
therapeutic interventions may also contribute to variations in
T1WI signal characteristics, thereby affecting the accuracy of
T1WI hyperintensity in HT diagnosis. In our study, the results
of multivariate logistic regression analysis revealed that age,
atherosclerosis and infarct size were risk factors associated
with T1WI hyperintensity in cerebral infarction. As individ-
uals age, brain tissue can undergo irreversible degeneration,
potentially exacerbated by conditions such as hypertension and
diabetes. This aging process can result in the gradual hardening
of cerebral vessels and increased permeability. Additionally,
inflammation and oxidative stress following cerebral infarc-
tion, among other factors, may lead to neuronal necrosis, which
may in turn cause the accumulation of lipids and proteins or the
formation of calcifications. These processes can result in the
adsorption of water molecules, ultimately leading to T1WI hy-
perintensity [25]. Atherosclerosis remains one of the important
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TABLE 2. Comparison of clinical data between the hyperintensity and non-hyperintensity group on T1WI.

Clinical data Hyperintensity group
(n = 31)

Non-hyperintensity group
(n = 84) χ2/t p

Gender (n (%))
Male 19 (61.29) 48 (57.14) 0.160 0.689
Female 12 (38.71) 36 (42.86)

Age (n (%))
≥60 years 28 (90.32) 57 (67.86) 5.927 0.015
<60 years 3 (9.68) 27 (32.14)

BMI (kg/m2) 23.20 ± 2.84 22.64 ± 2.76 0.958 0.340
Smoking history (n (%)) 7 (22.58) 18 (21.43) 0.018 0.894
Alcohol history (n (%)) 11 (35.48) 15 (17.86) 4.021 0.045
Underlying disease (n (%))

Hypertension 13 (41.94) 29 (34.52) 0.537 0.464
Diabetes 17 (56.67) 35 (41.67) 2.005 0.157
Hyperlipidemia 18 (58.06) 36 (42.86) 2.102 0.147
Atherosclerosis 19 (61.29) 31 (36.90) 5.479 0.019

History of cerebral infarction (n (%)) 6 (19.35) 9 (10.71) 1.490 0.222
Onset to admission (h) 10.97 ± 3.46 10.81 ± 2.83 0.237 0.813
NIHSS score (points) 9.74 ± 2.13 9.73 ± 2.01 0.070 0.944
TOAST typing

Large artery atherosclerosis type 15 (48.39) 31 (36.90) 2.832 0.418
Other/unknown etiology 12 (38.71) 38 (45.24)
Arteriolar occlusion 4 (12.90) 10 (11.90)
Cardioembolism 0 (0) 5 (5.95)

Cerebral infarction area (cm2) 3.84 ± 0.97 3.39 ± 0.98 2.191 0.031
Thrombolytic therapy (n (%)) 19 (61.29) 32 (38.10) 4.936 0.026
BMI: body mass index; NIHSS: National Institute of Health Stroke Scale; TOAST: Trial of Org 10 172 in acute stroke treatment.

TABLE 3. Influencing factors of T1WI hyperintensity.
Risk factors β value SE χ2 OR value 95% CI p
Age 0.092 0.027 11.610 1.096 1.040–1.156 <0.001
Atherosclerosis 1.265 0.489 6.692 3.543 1.359–9.239 0.010
Infarct size 0.143 0.051 7.862 1.154 1.044–1.275 0.005
SE: Standard Error; OR: Odds Ratio; CI: Confidence interval.

factors causing cerebral infarction and cerebral hemorrhage.
Vascular lesions and abnormal cerebral perfusion may also
lead to neuronal and myelin structural damage, destroy the
BBB and promote gliosis. It can also cause complex T1WI
signal changes, some of which show T1WI hyperintensity [26–
28]. The extent of the cerebral infarction area represents a
significant risk factor for the occurrence of hyperintensity on
T1WI. Some studies have established a connection between the
cerebral infarction area and the development of hyperintensity
on T1WI, which is closely associated with HT. For instance,
Liu et al. [29] reported that extensive cerebral infarction serves
as a crucial risk factor for HT following thrombolysis. Addi-
tionally, severe edema and hypoxia resulting from extensive
infarction can give rise to laminar necrosis, which constitutes

another important underlying cause of T1WI hyperintensity
[30].

5. Conclusions

In conclusion, T1WI hyperintensity often manifests in cerebral
infarction as the disease progresses and is primarily associated
with HT, offering valuable diagnostic insights. Nevertheless,
this phenomenon can be influenced by factors such as age,
atherosclerosis and infarct size. Thus, to enhance diagnostic
accuracy, future studies may consider excluding or refining
and quantifying T1WI signal characteristics while addressing
these factors. This study has two primary limitations. Firstly,
the sample size was relatively small (115 cases) and had a
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limited number (17 cases) of HT patients, potentially introduc-
ing statistical bias. Expanding the sample size in subsequent
studies would be essential to validate the results. Secondly, the
exclusion of intracranial tumors, epilepsy, traumatic brain in-
juries and other brain lesions or injuries may not fully account
for the practical clinical interference that these factors may
pose to T1WI images of HT patients. As research advances
and MRI technology continues to evolve, the relationship
between T1WI hyperintensity and HT in patients with cerebral
infarction is becoming clearer, thereby providing valuable
insights for HT prediction and diagnosis; however, the full
clinical implications and significance of these findings remain
to be analyzed and further elucidated.
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