Adaptation and validation of a pediatric simulator to study the movement of the cervical spine

Javier Ruiz Casquet1,2, Ana Nicolás Carrillo1, María Isabel Hontoria Hernández1,2, Pablo Rico Berbegal1, Raquel Gordillo Martín1,3, Laura Juguera Rodríguez1,3, Mariana Ferrandini Price1, Manuel Pardo Ríos1,2,*

1 UCAM, Catholic University of Murcia, 30107 Murcia, Spain
2 Emergencies Medical Services 061 of the Region of Murcia, Health Service of Murcia, 30100 Murcia, Spain
3 University Clinical Hospital Virgen de la Arrixaca de Murcia, Health Service of Murcia, 30120 Murcia, Spain

*Correspondence
mpardo@ucam.edu (Manuel Pardo Ríos)

1. Introduction

A pediatric spinal cord injury (SCI) represents around 2.5%–5% of the total annual incidence of traumatic spinal cord injuries (TSCI) [1,2], with falls being the most common cause [1] in a sports context, according to some studies [3,4]. Cervical injuries are the most common type of TSCI, with the incidence being double in children (80%) than adults (30%–40%) [1,2]. Due to their anatomy, the risk of a SCI of children is smaller, although the consequences are not always or necessarily less devastating [5]. Children have a more flexible spinal cord, due to increased ligamentous laxity and less densely packed spinal ligaments, to their muscles being still under development, and underdeveloped spinous processes. Therefore, the pediatric spine is considered hypermobile as compared to the adult spine [6]. Until the age of 8, differences are observed in their spinal cord with respect adults, as well as an imbalance between their head and torso, with the craniovertebral junction being the most vulnerable [1,6–8].

In general, there are three main mechanisms that can lead to pediatric SCI (flexion/extension, acceleration/deceleration and rotational injury) [2]. Forces, impacts and injuries have different effects, and at this age, the injuries provoked by the acceleration and deceleration forces in a traffic accident tend to be more common [9]. We thus find ourselves with the complex diagnosis at this age, given that in the evolution of the development of the spinal cord, we can find parts that are not ossified yet, or cartilage undergoing processes of development, which can be confused with non-existing injuries, and vice-versa [6–8].

Health professionals consider that the restriction of movement (RM) is necessary for children when faced with a strong impact, a response that is not always reliable, although it is performed due to the fear of a possible misdiagnosis that could result in TSCI [10,11]. The available evidence regarding protocols and management of pediatric patients, as well as their outcomes following trauma, is limited, and there is a prevalent reliance on pragmatism due to the absence of standardized techniques. However, this may heighten the risk of potential spinal cord injuries (SCI) [12,13]. The creation of new protocols based on studies with real patients would imply a high risk for the victims, although for major trauma patients, time is critical, and any delay or mistake could result in fatal repercussions [14,15].

Medical learning through simulation has become an increasingly important tool in recent years [16]. It is considered reliable, as there are numerous studies available in the literature that are based on simulation-based learning [15,17–19].

Thus, a study was planned for choosing, preparing, adapting and validating a simulator that could comply with the anthropometric importance tool in recent years [1].
The analysis of movement was determined through the use of inertial sensors (IS) (STT Systems Group, San Sebastián, Spain), model STT-IBS iSen 3D Motion Analyser®. These IS have been used in other, similar studies [18, 19]. These IS were composed by an accelerometer, a gyroscope, and a magnetometer, wrapped by a rigid case (36 mm × 15 mm × 46.5 mm) with a total weight of 29 g, a transmission frequency of 250 Hz, static precision (roll, pitch, yaw) <0.5°, dynamic precision (roll, pitch, yaw) <1.5°, and a latency of less than 0.004 s. The IS determines the angular orientation, thus providing values in the 3 axes of space (X, Y, and Z). Two IS were placed on the simulator: one inside the head (upper area), and one on the inside of the thorax (retrosternal).

2.2 Statistical analysis
The data were collected with the EXCEL Microsoft program (EXCELL v2019. Microsoft Corporation, Redmond, WA, United States) and analyzed with the SPSS statistics v26 program (IBM, Armonk, NY, United States). The data are shown as means and standard deviations (SD). The Intraclass Correlation Coefficient (ICC) was utilized to determine reliability. To interpret the ICC, which determines the level of reliability or agreement of the results obtained, the classification by Prieto et al. [22] was followed. Thus, an ICC <0.3 indicated a low reliability, an ICC between 0.3–0.5 indicated to a moderate correlation, and an ICC >0.5 indicated a high reliability. The differences were defined as statistically significant if \(p < 0.05 \).

3. Results
The initial phase of the study involved the selection of the most appropriate simulator. Table 1 displays the averages of the maximum range of movements recorded during the simulations with the 4 devices chosen for the initial tests. After analyzing the results of the recorded cervical movements, “Simulator 1” (Pediatric Hal® S3005, from Gaumar) was chosen as the most suitable for our study, due to its wider range of forced mobility, as it was the closest to the pediatric patient with an unstable spine. The degrees of movement of the simulator selected were flexion 30° ± 4°, extension 43° ± 2°, left lateral movement 30° ± 2°, right lateral movement 32° ± 3°, left rotation 27° ± 2°, and right rotation 25° ± 2°.

The reliability of Simulator 1 obtained ICC results for the flexion-extension movement of 0.937 (\(p < 0.001 \)), 0.893 (\(p < 0.006 \)) for the left-right lateral movement, and for the left-right rotation, 0.845 (\(p = 0.006 \)). The results showed an ICC with a “high” reliability for the three movement axes analyzed.

4. Discussion
The available literature on the management of pediatric spinal cord injury is limited, and there is no specific pediatric simulator on the market for analyzing cervical misalignment. The information gathered from the management of spinal cord injury in adults is not applicable to children under the age of eight due, to numerous differences in the spine between the two populations. In these children, the greater number of vertebrae in the spine, the higher center of rotation (COR) at the cervical level (C2–C3), increased cerebrospinal fluid (CSF) volume, greater spinal flexibility, increased muscle weakness, and a larger head size relative to body surface area, all contribute to these differences [6].

We have not found studies on cervical movement in children with traumatic spinal cord injuries (TSCI). Some authors have studied cervical instability by inducing injuries in adult cadavers, and have demonstrated that after an injury, an unstable spinal column results, leading to wide ranges of motion due to section, distention or injuries to different ligaments [21]. Del Rossi et al. [21], for instance, conducted studies based on previously prepared cadavers, inducing injuries at the cervical level (C5–C6) of the spinal cord in each cadaver, obtaining movement results of more than 11° [21]. In our study, the simulator achieved values greater than 30° ± 2°. Given the...
FIGURE 1. Name and technical characteristics of each of the 4 simulators.

- **Pediatric Hal**
 - 5 years
 - 80 cm; 7 Kg

- **SimJunior**
 - 6 years
 - 120 cm; 11 Kg

- **Kyle**
 - 3 years
 - 80 cm; 3 Kg

- **Child Rescue**
 - 7-12 years
 - 122 cm; 7 Kg

FIGURE 2. Process of modification and adaptation of the simulator. (a) simulator selection; (b) modification of neck mobility; (c) adaptation of the head to 1 kg in weight; (d) anteroposterior radiograph of the device; (e) result of the adaptation of the device; (f) final result of the adapted simulator.
The chosen and adapted simulator allowed us to obtain extensive ranges of motion, with anthropometric measurements corresponding to those of a 5-year-old child according to WHO standards [20]. The results of the reliability test, assessed through the ICC, indicated a high level of agreement and excellent reliability, thereby providing a valid and reliable tool, as described by authors such as Prieto et al. [22].

In the biomechanical study conducted by Hontoria et al. [18], to analyze cervical misalignment during pediatric patient extrication using the RM SIPE Baby Rescuer® device, the simulator from our study was employed. The results obtained with the RM SIPE Baby Rescuer® device showed that it allows for the extrication of pediatric patients with high levels of spinal RM [18]. Such an analysis would be impossible to carry out on real patients due to legal and ethical constraints, as conducting experiments on actual patients would not be safe [2]. Hence, the RM SIPE Baby Rescuer® could not have been safely evaluated without the simulator. This is closely related to the primary limitation of our study, as it is a simulation, and the data does not originate from real patients. The life of an individual and the importance of timely action take precedence, preventing any delay in patient care due to an experiment. Therefore, simulation has emerged as the ideal solution for learning and providing new data without jeopardizing patient lives [23, 24]. This approach is currently widely practiced, and it is considered reliable [15, 17–19].

Managing major trauma patients, both adults and pediatrics, is extremely challenging. There is a notable lack of scientific evidence to determine the optimal choice of techniques and devices for spinal motion restriction (RM), and to support the development of protocols. The management of traumatic spinal cord injury cases in pediatrics is controversial, similar to that in adults [17, 25–28]. Survey results, such as those by Khetarpal et al. [29], conclude that even within the same state, recommendations for spinal clearance and pediatric immobilization are discrepant. In 2022, Nolte et al. [30] developed a new and interesting Emergency Medicine Spinal Immobilization Protocol for pediatric trauma patients. It was evaluated and shown to have a high level of compliance among professionals who performed the applicability test (82.9%), and a very high rate of professionals considered the protocol useful (97.8%) as well [30]. However, it should be noted that these professionals constituted a small group (44 participants) from the same location (Germany), so further research is needed to consider this protocol as applicable to broader trauma healthcare.

For all of these reasons, a simulation tool was adapted and validated to measure cervical misalignment in pediatric patients after a severe collision. This provides a valid and reliable tool for future studies and research. This opens the door to a vast realm of knowledge, as a reliable tool is now available to explore the care of pediatric patients with major trauma. This field of study is considered largely unexplored and of vital importance for finding reliable and adequate protocols for managing children with major trauma.

While various simulators are available on the market for techniques such as basic care, resuscitation and the development of skills in different medical and nursing areas, specific simulators for assessing spinal column movement in pediatric patients are not currently available. Our simulator is capable of providing a reliable measurement of simulator angulation when the same traction force, in the form of a 1 kg weight, is applied.

<table>
<thead>
<tr>
<th>TABLE 1. Means of the degrees of maximum misalignment of each simulator. The data are presented in degrees as: mean ± standard deviation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexion</td>
</tr>
<tr>
<td>Simulator 1 (Pediatric Hal®)</td>
</tr>
<tr>
<td>Simulator 2 (SimJunior®)</td>
</tr>
<tr>
<td>Simulator 3 (Kyle®)</td>
</tr>
<tr>
<td>Simulator 4 (Child Rescue®)</td>
</tr>
</tbody>
</table>

5. Conclusions

The main strength of this study is the adaptation of a pediatric simulator. Usually, these simulators are developed for training in other competencies such as cardiopulmonary resuscitation (CPR), care or trauma. With our results, we can now provide training on the management of a pediatric patient with a suspected SCI. The main conclusion of this study is that the selected, adapted, and validated pediatric simulator can determine spinal column movement in its cervical segment with a high degree of reliability.

AVAILABILITY OF DATA AND MATERIALS

The data are contained within this article.

AUTHOR CONTRIBUTIONS

MPR, LJ—designed the research study. RGM, MIHH and PRB—performed the research. JRC, ANC and MFP—analyzed the data. JRC and ANC—wrote the manuscript. All authors read and approved the final manuscript.
ETHICS APPROVAL AND CONSENT TO PARTICIPATE
Not applicable.

ACKNOWLEDGMENT
Not applicable.

FUNDING
Research funding by a grant awarded by the UCAM University PMAFI-09-21.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

REFERENCES

How to cite this article: Javier Ruiz Casquet, Ana Nicolás Carrillo, Maria Isabel Hontoria Hernández, Pablo Rico Berbegal, Raquel Gordillo Martín, Laura Juguera Rodríguez, et al. Adaptation and validation of a pediatric simulator to study the movement of the cervical spine. Signa Vitae. 2024; 20(3): 34-38. doi: 10.22514/sv.2024.026.