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Abstract
Over recent years, the escalation of patient volumes in emergency departments (ED)
worldwide has posed to the delivery of timely critical care. Intensive Care Unit (ICU)
services became essential due to increasing acuity in EDs, and previous studies revealed
a strong association between prolonged boarding times and unfavorable outcomes.
Innovative strategies such as Emergency Department-based Intensive Care Units (ED-
ICUs) have been introduced to optimize critical care delivery. Given the higher
acuity and mortality rates in ED-ICU patients, the prediction of certain events, such
as In-Hospital Cardiac Arrest (IHCA), has become abstruse. Conventional Early
Warning Scores (EWSs) were developed to stratify the risk of conventional ICUs, but
have never been validated in ED-ICU patients with higher acuity. Moreover, EWSs
are predominantly focused on forecasting mortality and lack capability for real-time
prediction. Our study aimed to develop and validate a deep-learning-based model to
predict IHCA within 24 h in ED-ICU. We included 1975 patients admitted to ED-ICU.
The study period was from 01 January 2019 to 31 December 2020. Our model, the Deep-
ICU CMS (Central Monitoring System), uses four classic vital signs (blood pressure,
heart rate, respiratory rate, and body temperature) as input. The model outperformed
conventional EWSs in predicting IHCA andmaintained performance even with extended
prediction windows; it provided robust prediction within a 24-h window, setting it apart
from models with restricted prediction horizons. It achieved notably high sensitivity
and specificity, overcoming the alarm fatigue issue that is common in EWSs. This
study pioneered IHCA risk stratification in ED-ICU and showcases Deep-ICU CMS as a
robust prediction tool that overcomes the limitations of conventional EWSs. Prospective
and external validation are now warranted to confirm the impact of Deep-ICU CMS in
real-world practice. Given the scarcity of research in ED-ICU, our findings contribute
valuable insights to optimizing critical care delivery.
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1. Introduction

Over recent years, emergency departments (ED) worldwide
have witnessed a surge in patient volumes, leading to in-
creased overcrowding and mounting challenges in the delivery
of timely critical care [1]. Increasing acuity has led to a
greater need for critical care services in EDs and intensive
care units (ICUs) [2] and several studies have demonstrated
that increased boarding time and ED crowding, which may

lead to shortage of ED staff and the availability of resources to
attend high acuity patients, is strongly associated with worse
outcomes in critically ill patients [3–6]. The discharge of
patients and movement to inpatients units represents an impor-
tant output component of a conceptual framework to measure
crowding within EDs that features three “buckets”: input,
throughput and output [7]. While the output represents a
commonly cited reason for crowding in EDs [7, 8] during
the COVID-19 pandemic, this challenge has been highlighted
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due to limited access block and the transmissibility of the
coronavirus, thus leading to a dose-response increase in the rate
of mortality in patients in the ED [9–11]. Novel strategies have
been implemented to overcome this situation such as innova-
tions in telemedicine, airway management using video laryn-
goscopes or infection control [12, 13]. Meanwhile, Emergency
Department-based Intensive Care Units (ED-ICU) has been
proposed to optimize the delivery of critical care and alleviate
the crowding burden in EDs in contrast to conventional ICU
admission systems [5, 14].
The South Korean government launched a similar program

in 2004, designating 12 regional emergency medical centers
across the country that featured 12 ED-ICU beds and was offi-
cially referred to as Emergency Intensive Care Units (EICU);
these beds were dedicated solely to patients admitted from Eds
[15]. In July 2023, 44 regional emergency medical centers
with 20 ED-ICU beds were established throughout the country
[16]. Although more than a decade has passed since the
first implementation of ED-ICUs in Korea, only a few studies
have been published on the nature of the population and the
effects of implementation. Some studies found that ED-ICU
patients had a higher severity at the time of admission and a
higher mortality than conventional ICU-admitted patients [15,
17], making it more difficult to predict clinical deterioration,
including In-Hospital Cardiac Arrest (IHCA), a crucial event
that needs to be predicted and prevented; this condition is
associated with an 18.8% rate of survival to hospital discharge
after the event [18].
The information and cognitive load might cause safety is-

sues in ICUs [19]. To ameliorate patient outcomes, EWSswere
globally introduced as a uniform system to represent patient
acuity. Widely used conventional EWSs in ICU settings,
such as the Acute Physiology and Chronic Health Evaluation
II (APACHE II) and Simplified Acute Physiology Score II
(SAPS II), are mainly focused on predicting mortality itself;
however, few researchers have investigated how these systems
can be used to predict and prevent IHCA. Recently, a multi-
center study demonstrated that conventional EWSs exhibited
poor calibration, even though their prediction performancewas
acceptable [20]. Moreover, the limitation of most conventional
EWSs used for prediction is that they are usually static, espe-
cially for use within 24 h of admission, and therefore do not
reflect the highly variable acuity of patients who have received
several treatments in real-time [21, 22]. Most importantly,
to our knowledge, no study nor tool has stratified the risk
of IHCA in ED-ICU settings, where patients tend to have
higher acuity when admitted and the mortality differs from
that in conventional ICUs [15, 17]. Given the scarcity of
research in ED-ICU settings, our findings contribute valuable
insights to optimizing the delivery of critical care for patients
admitted from the ED. A brief comparative analysis with
other conventional EWSs in conventional ICUs is presented
in Table 1.
DeepCARSTM , recently designated as a breakthrough de-

vice by the Food and Drug Administration (FDA), measures
the risk of CA within 24 h of real-time vital sign observa-
tion. This system showed potential in predicting IHCA with
higher sensitivity and a lower false-alarm rate than conven-
tional EWSs during its original development in patients on

a general ward [23]. In this study, we aimed to develop
and validate a new deep-learning-based model for real-time
prediction using the DeepCARSTM engine and algorithm to
predict IHCA within 24 h and stratify the risk of IHCA in ED-
ICU patients.

2. Materials and methods

Wonju Severance Christian Hospital (WSCH) is a tertiary
academic hospital comprising a regional emergency center and
a regional trauma center that allocates 20 ED-ICU beds solely
dedicated to patients admitted through the ED.

2.1 Study population
We conducted a retrospective cohort study using data collected
fromWSCH, which involved patients admitted to the ED-ICU
at WSCH in South Korea over a two-year period, starting from
01 January 2019, and ending on 31 December 2020. We used
data from 2019 to train our machine learning model, whereas
data from the subsequent year were used for evaluation.
We followed specific exclusion criteria when selecting our

study cohort. We excluded patients under the age of 20 years
and those with a prior history of Out-of-Hospital Cardiac
Arrest (OHCA) and IHCA before their ED-ICU admission.
To maintain the integrity and relevance of our dataset, we
excluded records that were entirely devoid of input feature
values.

2.2 Data collection and preprocessing
During each patient’s stay in the ED-ICU, we collected a
comprehensive set of four classic vital signs: blood pressure
(including systolic blood pressure (SBP) and diastolic blood
pressure (DBP)), heart rate (HR), respiratory rate (RR), and
body temperature (BT). In addition, patient age and the time
of measurement for each input were obtained from electronic
medical records (EMRs). To ensure the reliability and ac-
curacy of our analysis, we marked any values that deviated
extensively from the typical range or were non-numeric entries
as missing and removed them from the analysis. Then we used
a method called imputation to fill these gaps by replacing the
missing values with the most recently recorded valid values.
This approach helped keep our data complete and robust for
analysis.
We also acquired the exact time of IHCA from the EMRs.

Subsequently, we classified the data into two main types based
on the IHCA status of patients. Samples pertaining to patients
who experienced IHCA during their ED-ICU stay, ranging
from the onset of the IHCA to 24 h prior, were labeled as
“events”. Conversely, samples associated with patients who
did not encounter IHCA until their discharge from the ED-ICU
were classified as “non-events”.

2.3 Model development and validation
We constructed a deep learning-based predictive model called
Deep-ICU CMS (Central Monitoring System) incorporating
a vital sign encoder that consisted of a three bidirectional
long short-term memory (LSTM) encoder, that is widely used
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TABLE 1. Comparative analysis of risk stratification systems (SPTTS, APACHE II, NEWS and Deep-ICU CMS).
Feature SPTTS APACHE II NEWS Deep-ICU CMS
Outcome Alert based on single

abnormal vital sign
ICU risk stratification

(mortality)
Early detection of clinical

deterioration
Real-time prediction of
IHCA within 24 hours

Setting General wards ICUs General wards,
Emergency department

ED-ICU in this study,
possibly extendable to

ICUs
Input variables Classic 4 vital signs (BP,

HR, BT, RR), mental
status (AVPU)

Multiple physiological
parameters, age,

chronic health status
(14 variables in total)

Six physiological
parameters and whether
patient is having oxygen
therapy or not (7 variables

on total)

Classic 4 vital signs (BP,
HR, BT, RR), age, and
their input time (6

variables)

Characteristics Low performance and
high false alarm. Lack of

comprehensive
understanding due to the
nature of evaluating the

input separately.

Static, reflecting the
status within 24 hours

after admission.
Chronic health status is
hard to be gathered
automatically.

Intended to use in general
wards. High false alarm.

Deep-learning based
model.

SPTTS: Single-Parameter-Track-Trigger-System; APACHE II: Acute Physiology and Chronic Health Evaluation II; NEWS:
National Early Warning Score; ICU: Intensive Care Unit; BP: blood pressure, HR: heart rate; RR: respiratory rate, BT: body
temperature; CMS: Central Monitoring System; ED-ICU: Emergency Department-based Intensive Care Unit; AVPU: Alert,
Verbal, Painful and Unresponsive.

in various tasks in the medical field [24, 25], and a binary
classifier equipped with a fully connected layer. The LSTM
encoder processes the recently recorded sequence of 20 vital
signs. To prevent overfitting on the development dataset,
dropout layers and batch normalization techniques were ap-
plied in addition to the LSTM encoder. The architecture of the
Deep-ICU CMS is essentially the same as that of the model
developed in a previous study by Kwon et al. [23] in 2019,
which is used to predict IHCA in patients on general wards.
LSTM, the key layer in the DeepCARSTM and Deep-ICU
CMS architectures for encoding the sequences of vital signs, is
a type of neural network that features loops, thus allowing it to
manage sequential data such as electronic health records. This
structure aimed tomimicmedical staff when reviewing the past
medical information of patients when assessing their current
condition. Based on the pretrained knowledge in the existing
prediction model, we fine-tuned the model using ED-ICU
data. More detailed explanations of the model architecture are
provided in our previous research, including the outperforming
prediction ability on general wards in a prospective multi-
center study setting [23, 26–30].
To address the challenge of class imbalance, we adopted

a data augmentation strategy by duplicating the data labeled
as events, thereby adjusting the ratio of non-event-to-event
instances during training. However, we refrained from using
this strategy in the validation phase to evaluate the model’s
performance based on the original ratio. We experimented
with various combinations of hyperparameters, including data
batch size, learning rate, and the number of hidden dimensions
for each layer. The combination that demonstrated the best
performance was selected as the final model. We employed
the Adam optimization algorithm [31] with a learning rate of
0.0001. Furthermore, our model was trained with a batch size
of 256, and the LSTM encoder’s hidden dimension was also

configured to 256.
The training set included samples from patients admitted

from 01 January 2019 to 31 December 2019, and the test
set included samples from patients admitted from 01 January
2020 to 31 December 2020. Essentially, our dataset, sourced
directly from electronic health records over two successive
years, provided an in-depth snapshot of real-world ED-ICU
scenarios. This solid dataset helped to enhance the external
validity of the Deep-ICU CMS model. In addition, we utilized
an early stopping method that stopped training at the optimal
point based on the model’s performance on the validation set.
The variables utilized for training were the same as those used
to evaluate the test set, as described earlier.
As previously detailed in our IHCA event labeling, the

trained model predicts the likelihood of an IHCA occurring
within the subsequent 24 hours from the present moment. If
the model determines a substantial likelihood of an impending
IHCA event, it produces a value approaching 100; conversely,
a value nearing 0 indicates a minimal probability of the event
occurring. In a practical EWS system, Deep-ICU CMS is
designed to alert medical staff with a list of patients whose
scores surpass the alarm threshold set by the professionals in
the ICU. Furthermore, the medical team has the flexibility to
adjust this threshold to manage the frequency of alarms.

2.4 Main outcome
The primary outcome of interest was the ability to predict the
risk of IHCA within 24 h in an ED-ICU. IHCA was defined
as the “cessation of cardiac activity, confirmed by the absence
of a detectable pulse, unresponsiveness, and apnea”, from the
“in-hospital Utstein style” consensus guidelines published by
the American Heart Association (AHA) [32]. Wemeticulously
extracted and analyzed data related to IHCA incidents from
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multiple sources. This encompassed time-stamped orders of
cardiopulmonary resuscitation (CPR) prescribed to patients,
as well as the documentation of electrocardiographic (ECG)
records associated with IHCA during attendance in the ED-
ICU. Lethal rhythm (Pulseless Electric Activity (PEA) and
Asystole) and shockable rhythm (pulseless Ventricular Tachy-
cardia (pVT) and Ventricular Fibrillation (V.Fib) were both
included. Then, we compared the predictive performance of
our model with that of other conventional EWSs (the National
Early Warning Score (NEWS) and single-parameter-Track-
Tigger-System (SPTTS)). We excluded Do-Not-Resuscitate
IHCA cases.

2.5 Secondary outcomes and statistical
analysis
The performance of the IHCA prediction model was evaluated
by comparison metrics from the receiver operating character-
istic (ROC) curve, area under the curve (AUROC), and area
under the precision-recall curve (AUPRC). The AUROC, a
commonly used measure, illustrates the discriminatory ability
of a model by plotting sensitivity against the false positive rate.
In contrast, AUPRC addresses the issue of imbalanced data by
quantifying the precision-sensitivity relationship. To conduct a
robust comparison, we compared the Deep-ICUCMSAUROC
and AUPRC values with three baseline methods: the NEWS,
Logistic Regression (LR), and Random Forest (RF) methods.
NEWS is an early warning system that is widely used in
clinical practice, whereas the LR and RF models are machine-
learning algorithms that are frequently used for their predictive
capabilities.
In addition, we carried out comparative analysis with the

NEWS tool by evaluating the F-score, net reclassification in-
dex (NRI), positive predictive value (PPV), negative predictive
value (NPV), mean alarm count per day per 20 beds (MACPD),
and the number needed to examine (NNE) at equivalent speci-
ficity levels as NEWS. The NNE is calculated as the total
number of alarms divided by that of true positive alarms. The
MACPD, which is calculated as the total number of alarms
divided by that of days under the study period, and alarm rate,
were compared at matching sensitivity levels, thus indicating
that predictive performance and alarm rate are essential criteria
for validating the practicality of an early warning system. A
brief comparative analysis with conventional EWSs (APACHE
II, NEWS) in terms of outcomes, input variables and charac-
teristics are presented in Table 1 to demonstrate the differences
between our model and existing methods. We did not compare
our model with the APACHE II tool due to the unfairness of
comparison with a static value that only reflects the status of
early period of admission.
The potential of early IHCA prediction in the ED-ICU to

enable the timely implementation of targeted interventions is
remarkable and could potentially prevent the occurrence of
IHCA. Such early identification and intervention hold promise
for improving patient outcomes and alleviating the associated
mortality burden. Hence, we evaluated the degree to which our
model outperformed NEWS in the early prediction of IHCA in
the ED-ICU.
We also analyzed additional results and the performance of

our prediction model from various aspects, as described below.

2.5.1 Subgroup performance analysis
To understand the predictive performance within specific
patient subgroups, we stratified patients based on sex, age,
and risk level upon ED-ICU admission, as quantified by
the APACHE II score. This subgroup analysis allowed us
to thoroughly evaluate the performance of the Deep-ICU
CMS model and its ability to accurately predict IHCA across
different patient profiles.

2.5.2 Feature importance analysis
A crucial aspect of interpreting the decision-making process
for the Deep-ICU CMS is determining the significance of
individual vital sign characteristics. We used SHapley Addi-
tive exPlanations (SHAP) values to calculate the importance
of each feature and time step. By quantifying the impact of
specific vital signs on the predictions made by our model, we
aimed to enhance the interpretability and understanding of the
factors driving IHCA predictions.

2.5.3 Calibration analysis
A crucial aspect of the utility of a predictive model is its ability
to provide accurate and reliable probability estimates. The
calibration performance of the predictive model was assessed
by focusing on its ability to produce well-calibrated output
probabilities.

2.5.4 Statistical analysis
We conducted a comparative analysis between the AUROC
scores of our proposed model and those of other baseline
methods. DeLong’s test was used to ascertain the statistical
significance of the observed differences. All thresholds for
determining statistical significance were set at p < 0.05. R
software version 3.6.3 (R foundation, Vienna, Austria) was
used for the analysis. T-tests were performed to verify the
statistical significance of the differences in vital signs between
the development and validation datasets. The missing value
rate according to the time of model prediction was assessed
in both the development and validation datasets; this strategy
aimed to verify that the input chosen in our model was the
same as that frequently employed in the real word, and that
the scarcity of the missing value would have little influence
on the results if implemented in real world. The threshold for
determining statistical significance was set at p < 0.05. All
analyses were conducted using Python (version 3.8.13) and the
SciPy library (version 1.7.3).

3. Results

3.1 Baseline characteristics
The baseline characteristics of patients employed in the de-
velopment (2019) and validation (2020) of our model are
outlined in Table 2. The development dataset consisted of 970
admitted patients, with 103 experiencing IHCAs within their
period of admission. The validation dataset, collected in the
subsequent year, contained 1025 admitted patients, with 95
IHCAs reported. The construction of the development dataset
and validation dataset is described as a flowchart in Fig. 1.
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TABLE 2. Baseline characteristics of the development and validation dataset.

Baseline Characteristics Development (2019) Validation (2020) p-value

Study period 2019-01-01–12-31 2020-01-01–12-31

Total admission patients 970 1025

IHCA patients within admissions 103 95

Non-event patients/event patients 8.4 9.8

Total vital sign records 109,859 110,508

Vital sign records before IHCA within 24 h 3242 3306

Non-event records/event records 32.8 32.4

Male/Female 1.51 1.67

Age (yr) 63.94 ± 15.68 63.87 ± 15.59 0.926

Length of stay in ED-ICU (day) 2.95 (1.58–5.73) 2.70 (1.28–5.63) 0.855

IHCA time after ED-ICU admission (h) 36.25 (8.05–99.17) 36.15 (12.13–107.08) 0.086

Total vital sign

Systolic blood pressure (mmHg) 126.34 ± 24.58 127.98 ± 24.22 <0.001

Diastolic blood pressure (mmHg) 63.67 ± 13.34 64.96 ± 14.45 <0.001

Heart rate (/min) 89.13 ± 21.55 86.52 ± 20.21 <0.001

Respiratory rate (/min) 20.62 ± 6.00 18.68 ± 5.82 <0.001

Body temperature (ºC) 36.98 ± 0.55 36.90 ± 0.56 <0.001

Vital sign within 24 hours before IHCA <0.001

Systolic blood pressure (mmHg) 101.66 ± 29.86 100.93 ± 28.61 <0.001

Diastolic blood pressure (mmHg) 54.31 ± 13.53 54.42 ± 13.54 <0.001

Heart rate (/min) 107.04 ± 27.17 102.68 ± 25.85 <0.001

Respiratory rate (/min) 24.29 ± 6.29 23.57 ± 7.10 <0.001

Body temperature (ºC) 36.95 ± 0.80 36.56 ± 0.74 <0.001

Measurement interval of vital signs

Systolic blood pressure (h) 0.89 0.99

Diastolic blood pressure (h) 0.89 0.99

Heart rate (h) 0.90 0.99

Respiratory rate (h) 0.93 1.04

Body temperature (h) 1.68 1.71

IHCA: In-Hospital Cardiac Arrest; ED-ICU: Emergency Department-based Intensive Care Unit.
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FIGURE 1. A flowchart showing the exclusion and inclusion criteria applied during patient selection. ED-ICU:
Emergency Department-based Intensive Care Unit; OHCA: Out-of-Hospital Cardiac Arrest; IHCA: In-Hospital Cardiac Arrest.

In terms of demographic data, the ratio of male to female
patients was slightly higher in the validation dataset (1.67)
than in the development dataset (1.51). The mean age was
similar in both datasets (approximately 64 years), with a slight
standard deviation around 15.6 years. The mean length of stay
in the ED-ICU was marginally shorter in the validation dataset
(2.70 days) than in the development dataset (2.95 days). The
median time to IHCA after admission to the EDICUwas almost
identical between the two datasets.
There were slight differences between the development and

validation datasets for certain baseline patient characteristics.
However, key parameters, such as the ratio of male to female
patients, age, and length of stay in the ED-ICU, remained
consistent. Interestingly, both datasets demonstrated marked
shifts in vital signs within the 24 h preceding an IHCA event.
Table 3 illustrates the missing rate of vital signs in the vali-
dation dataset over different time intervals. As the interval
increased, the missing data rate generally decreased for all
vital signs. Notably, BT had a significantly higher missing
rate at the 1-hour interval (36.39%) when compared to other
vital signs, although this decreased substantially over longer
intervals. A similar trend was observed in the development
dataset, as shown in Table 4.

3.2 Predictive performance
As illustrated in Fig. 2 and Table 5, our predictive model
showed exceptional capabilities for the prediction of IHCA
within 24 h in the ED-ICU environment, markedly outper-

forming the three baseline methods (NEWS, LR and RF). Our
model demonstrated a robust predictive performance, with an
AUROC score of 0.923 (95% confidence interval (CI), 0.919–
0.929). This considerably overshadowed LR, with an AUROC
of 0.882 (95% CI, 0.879–0.887); RF, with an AUROC of
0.881 (95% CI, 0.876–0.887); and NEWS, with an AUROC of
0.864 (95% CI, 0.860–0.871). Similarly, our model surpassed
the three baselines when evaluated by AUPRC. Our model
had an AUPRC of 0.4068 (95% CI, 0.3970–0.4272), LR had
an AUPRC of 0.2925 (95% CI, 0.2824–0.3084), RF had an
AUPRC of 0.2778 (95% CI, 0.2684–0.2970), and NEWS had
an AUPRC of 0.2908 (95% CI, 0.2800–0.3039). The higher
AUROC and AUPRC values of the Deep-ICU CMS indicated
that in addition to accurate prediction, the model is particu-
larly skilled at distinguishing between patients who will have
an IHCA and those who will not, even when positive cases
are scarce. These findings highlight the superior predictive
strength of our model for predicting the risk of IHCA within
24 h, signifying its potential applicability in a clinical context.

3.3 Performance according to different
event times

We evaluated the performance of our model, along with those
of LR, RF and NEWS, at multiple timeframes preceding IHCA
events (3, 6, 12 and 24 h). Table 6 shows that our model had
the highest AUROC value of 0.9473, exceeding those of LR
(0.9175), RF (0.9249) and NEWS (0.9166) 3 h ahead of IHCA.
Six hours before the event, our model continued to exhibit
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TABLE 3. Missing rate of data in the validation dataset with regards to time interval.

Interval (h) SBP
missing rate (%)

DBP
missing rate (%)

HR
missing rate (%)

RR
missing rate (%)

BT
missing rate (%)

1 0.79 0.77 0.83 1.83 36.39

2 0.71 0.71 0.75 1.48 4.57

3 0.54 0.55 0.60 1.31 1.37

6 0.25 0.24 0.40 0.84 0.64

24 0.04 0.04 0.16 0.41 0.28

For all input data 1.81 1.72 2.86 7.58 41.87

SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: heart rate; RR: respiratory rate; BT: body
temperature.

TABLE 4. Missing rate of data in the development dataset with regards to time interval.

Interval (h) SBP
missing rate (%)

DBP
missing rate (%)

HR
missing rate (%)

RR
missing rate (%)

BT
missing rate (%)

1 0.17 0.18 0.93 1.25 41.46

2 0.08 0.08 0.95 1.15 5.89

3 0.05 0.04 0.93 1.15 1.58

6 0.04 0.04 0.90 1.18 1.33

24 0.04 0.04 0.78 1.00 0.87

For all input data 1.19 1.16 2.71 6.08 46.12

SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: heart rate; RR: respiratory rate; BT: body
temperature.

FIGURE 2. Area Under the Receiver Operating Characteristics curve. Our model outperformed Logistic Regression (LR),
Random Forest (RF), NEWS (National Early Warning Score), and SPTTS (Single-Parameter-Track-Trigger-System) in all ranges
of false positive rate (FPR).
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TABLE 5. Overall performance comparison of IHCA prediction within 24 h measured by AUROC and AUPRC scores.

Prediction model Total AUROC
(95% CI)

Total AUPRC
(95% CI)

Deep-ICU CMS 0.923 (0.919–0.929) 0.4068 (0.3970–0.4272)

Logistic Regression 0.882 (0.879–0.887) 0.2925 (0.2824–0.3084)

Random Forest 0.881 (0.876–0.887) 0.2778 (0.2684–0.2970)

National Early Warning Score (NEWS) 0.864 (0.860–0.871) 0.2908 (0.2800–0.3039)

Single-Parameter-Track-Trigger-System 0.734 (0.729–0.744) 0.0732 (0.0715–0.0787)

AUROC: Area Under Receiver Operating Characteristics; AUPRC: Area Under Precision-Recall Curve; CI:
confidence interval; ICU: Intensive care unit; CMS: Central Monitoring System.

TABLE 6. Comparison of AUROC scores over time before cardiac arrest for different prediction models.
Time before IHCA (h) Deep-ICU CMS LR RF NEWS SPTTS
2 0.949 0.920 0.926 0.919 0.811
3 0.947 0.918 0.925 0.917 0.812
6 0.941 0.912 0.915 0.906 0.791
12 0.930 0.898 0.899 0.881 0.753
24 0.923 0.882 0.881 0.864 0.734
CA: Cardiac Arrest; LR: Logistic Regression; RF: Random Forest; NEWS: National Early Warning Score; SPTTS:
Single-Parameter-Track-Trigger-System; IHCA: In-Hospital Cardiac Arrest; ICU: Intensive care unit; CMS:
Central Monitoring System.

superior performance, registering an AUROC of 0.9405 as
opposed to LR (0.9116), RF (0.9150) and NEWS (0.9059).
Furthermore, out model achieved the highest AUROC even
at broader intervals prior to IHCA. Twelve hours before the
event, our model’s AUROC was 0.9297, thus outperforming
LR (0.8980), RF (0.8989), and NEWS (0.8814). In addition,
twenty-four hours before IHCA, our model outperformed the
others, with anAUROCof 0.9225; in comparison, theAUROC
values for LR, RF and NEWSwere 0.8822, 0.8814 and 0.8645,
respectively. Overall, our model consistently exhibited supe-
rior predictive performance over LR, RF and NEWS, irrespec-
tive of the timeframe leading up to the IHCA events. This high-
lights the fact that Deep-ICU CMS consistently outperformed
other models in predicting IHCAs across all examined time-
frames, signifying its robustness and potential for early clini-
cal intervention. Notably, its marked advantage over single-
parameter systems such as Single-Parameter-Track-Trigger-
System (SPTTS) emphasizes the value of comprehensive data-
driven models in critical care settings.

3.4 Comparative analysis with NEWS and
alarm performance

Next, we performed in-depth comparative analysis with
NEWS and evaluated key metrics at the same specificity
levels and analyzed alarm performance across multiple cutoff
points at the same sensitivity levels. The comprehensive
outcomes of these assessments are presented in Tables 7 and 8.
Classification outcomes, including those from the confusion
matrix, were evaluated each time a new vital sign was
recorded. In IHCA patients, measures were taken specifically
within the 24 hours before the IHCA event. In contrast, in

normal patients, we considered vital signs throughout the
entire period of admission. Finally, the overall sensitivity
and specificity were calculated using the accumulated true
positives, true negatives, false positives, and false negatives
from the entire validation set.
When comparing our model to NEWS, we found that our

model consistently improved the sensitivity, NRI, and both
predictive values (PPV and NPV) while maintaining similar
alarm counts (MACPD) and achieving lower NNE values. For
instance, at the NEWS sensitivity levels of 0.973 and 0.922,
our model improved the sensitivity to 0.990 and 0.964, re-
spectively. Simultaneously, our model increased NRI values,
demonstrating a superior ability to augment IHCA predictions.
These improvements were also mirrored in the predictive val-
ues, reinforcing the precision of ourmodel for predicting IHCA
and non-arrest events.
In terms of alarm performance, our model demonstrated su-

perior effectiveness when compared with NEWS across all of
the sensitivity levels examined. For instance, at sensitivity lev-
els of 0.973 and 0.922, our model yielded a higher specificity,
a reducedNNE, and a lowerMACPD, translating to substantial
MACPD reduction rates of 22.5% and 40.2%, respectively.
This pattern of improved performance was extended to lower
sensitivity levels, with our model persistently achieving higher
specificity, reduced NNE and lower MACPD, thus highlight-
ing its practicality and efficiency in clinical settings.
Thus, our model demonstrated enhanced performance com-

pared with NEWS, both in terms of classification accuracy and
alarm efficiency, making it a promising alternative for the early
detection of IHCA in clinical settings.
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TABLE 7. Comparative alarm efficiency of NEWS and our model at equivalent sensitivity levels.
Cutoff Sensitivity Specificity NNE MACPD Reduction rate of

MACPD

NEWS ≥1 0.973 0.290 24.658 311

Deep-ICU CMS ≥8.9 0.973 0.436 19.798 241 −22.5%

NEWS ≥2 0.922 0.512 18.155 214

Deep-ICU CMS ≥23.9 0.922 0.717 10.961 128 −40.2%

NEWS ≥3 0.861 0.673 13.318 148

Deep-ICU CMS ≥45.5 0.861 0.850 6.638 77 −48.0%

NEWS ≥4 0.767 0.808 9.132 95

Deep-ICU CMS ≥68.9 0.767 0.921 4.351 50 −47.4%

NEWS ≥5 0.659 0.898 6.000 58

Deep-ICU CMS ≥85.0 0.659 0.954 3.278 35 −39.7%

NEWS ≥6 0.554 0.947 4.107 37

Deep-ICU CMS ≥92.9 0.554 0.972 2.669 26 −29.7%

NEWS ≥7 0.427 0.974 2.989 24

Deep-ICU CMS ≥97.1 0.427 0.985 2.159 18 −25.0%

NEWS ≥8 0.308 0.987 2.366 15

Deep-ICU CMS ≥98.7 0.308 0.993 1.743 12 −20.0%

NEWS: National Early Warning Score; MACPD: Mean Alarm Count per Day; NNE: Number needed to examine;
ICU: Intensive care unit; CMS: Central Monitoring System.

TABLE 8. Comparative metrics of NEWS and our model at equivalent specificity levels.
Cutoff Sensitivity Specificity PPV NPV F-score MACPD NNE NRI

NEWS ≥1 0.973 0.291 0.041 0.997 0.078 311 24.658 -

Deep-ICU CMS ≥5.6 0.990 0.291 0.041 0.999 0.079 300 24.190 0.006

NEWS ≥2 0.922 0.512 0.055 0.995 0.104 214 18.155 -

Deep-ICU CMS ≥11.4 0.964 0.512 0.057 0.998 0.108 210 17.410 0.396

NEWS ≥3 0.861 0.674 0.075 0.994 0.138 148 13.318 -

Deep-ICU CMS ≥20.1 0.932 0.674 0.081 0.997 0.149 145 12.321 0.568

NEWS ≥4 0.767 0.808 0.110 0.991 0.192 95 9.132 -

Deep-ICU CMS ≥36.7 0.885 0.808 0.125 0.996 0.218 93 8.031 0.693

NEWS ≥5 0.659 0.898 0.167 0.988 0.266 58 6.000 -

Deep-ICU CMS ≥59.9 0.812 0.898 0.197 0.994 0.317 59 5.079 0.761

NEWS ≥6 0.554 0.947 0.243 0.986 0.338 37 4.107 -

Deep-ICU CMS ≥81.7 0.681 0.947 0.284 0.990 0.401 38 3.521 0.781

NEWS ≥7 0.427 0.974 0.335 0.982 0.375 24 2.989 -

Deep-ICU CMS ≥93.9 0.533 0.974 0.388 0.985 0.449 24 2.578 0.778

NEWS ≥8 0.308 0.987 0.423 0.979 0.356 15 2.366 -

Deep-ICU CMS ≥97.6 0.401 0.987 0.489 0.982 0.441 16 2.044 0.765

NEWS: National Early Warning Score; PPV: Positive Predicted Value; NPV: Negative Predicted Value; MACPD:
Mean Alarm Count per Day; NNE: Number needed to examine; NRI: Net reclassification index; ICU: Intensive care
unit; CMS: Central Monitoring System.
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TABLE 9. Comparative time-to-event analysis between our model and NEWS.
Cumulative percentage of predicted CA patients Deep-ICU CMS (h) NEWS (h) Difference of predicted time (h)
26% 23.2 20 3.2
35% 20.0 16 4.0
44% 15.7 12 3.7
55% 10.8 8 2.8
65% 6.4 4 2.4
71% 5.2 0 5.2
CA: Cardiac Arrest; NEWS: National Early Warning Score; ICU: Intensive care unit; CMS: Central Monitoring System.

3.5 Early prediction superiority
Our model consistently demonstrated a superiority over the
NEWS in terms of the early prediction of IHCA within the
ED-ICU. We set the alarm threshold of our model to the same
specificity as when the NEWS was greater than or equal to
8. As shown in Table 9, our model provided warnings 23.2 h
before the event for the first 26% of the predicted IHCA cases;
this was 3.2 h ahead of the 20 h warning provided by NEWS.
This advantage increased with the cumulative percentage of
patients with predicted IHCA. In the first 35% of cases, our
model delivered warnings 20 h in advance, a full 4 h earlier
than NEWS. Similarly, in the first 44% and 55% of predicted
cases, our model achieved a lead time of 3.7 and 2.8 h earlier
than NEWS, providing alerts 15.7 and 10.8 h before the actual
IHCA event, respectively. The disparity between our model
and NEWS was most pronounced in the top segments of the
predicted IHCA cases. For the first 65% and 71% of the
predicted cases, our model signaled warnings 6.4 and 5.2 h
prior to IHCA, thus outperforming NEWS by a substantial 2.4
and 5.2 h, respectively. We also found that our model predicted
IHCA 14.4 h earlier on average.
In summary, our model demonstrated remarkable superior-

ity over NEWS for the early prediction of IHCA. By offering
alerts earlier across a broad spectrum of patient populations,
our model demonstrated the potential to considerably enhance
the window for effective and timely interventions in ED-ICUs.

3.6 Subgroup performance analysis
We conducted subgroup analysis to evaluate the performance
of our model across various demographic and clinical groups
by comparing it with LR, RF and NEWS.
When examining patients grouped by age, as shown in

Table 10, ourmodel demonstrated a higher area under the curve
(AUC) for each age category than LR, RF and NEWS. Among
patients aged 40–60 years, the AUC of our model was 0.960,
thus surpassing that of the other models. Similarly, superior
performance was observed in patients aged 60–80 years and in
those aged 80 years or above, with AUC values of 0.912 and
0.910, respectively. We also analyzed performance based on
sex. As shown in Table 9, our model exhibited higher AUC
values for both the male and female subgroups, at 0.919 and
0.929, respectively, thus outperforming LR, RF and NEWS in
both cases. Finally, we assessed the results using the APACHE
II score, a widely used classification for the severity of disease.
As shown in Table 9, our model exhibited superior AUC values

for all categories of APACHE II scores. In this experiment, we
only utilized the prediction results from patients with a valid
APACHE II score. For scores between 0 and 15, 15 and 25, and
above 25, our model achieved AUC values of 0.934, 0.900 and
0.932, respectively, thus surpassing those of the other models
for each score category.
In summary, our model consistently outperformed LR, RF

andNEWS across various subgroups, demonstrating its robust-
ness and potential for broader applications in different patient
populations.

3.7 Feature importance analysis
In our feature importance analysis, we utilized the Shapley
Additive exPlanations (SHAP) framework, which provides
a unified measure of feature importance that appropriately
allocates the contribution of each feature to the model output.
As shown in Fig. 3A, the vital signs that emerged as the most

critical in the performance of our model, ranked in descending
order of importance, were SBP, HR, RR, BT and DBP. This
highlights the significance of these physiological markers for
the early prediction of IHCA. In addition, our temporal analy-
sis highlighted the importance of recent data for driving model
predictions.
Moreover, our analysis emphasized the importance of ap-

plying the most recent data points in the model’s predic-
tions. As shown in Fig. 3B, the SHAP values associated with
the sequences increased as the observations approached the
present, indicating that the most recent data exerted a stronger
influence on the prediction outcome. This finding highlighted
the dynamic nature of patient vital status and the necessity for
current information to accurately predict IHCA.

3.8 Calibration analysis
Calibration is a critical aspect of the performance of a predic-
tion model, as it measures the agreement between the predicted
probabilities of an event and the observed frequencies. In this
analysis, we used the expected calibration error (ECE) loss
to quantify the calibration performance of our model and the
NEWS. Our model demonstrated an extensively lower loss of
ECE (0.029) than NEWS (0.248), indicating that our model
predictionsweremore alignedwith the observed frequencies of
IHCA. A lower loss of ECE signified a smaller discrepancy be-
tween the model’s predicted probabilities and actual outcomes,
thus indicating better calibration.
The superior calibration performance of our model is il-
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TABLE 10. Subgroup performance analysis.
Group by age Number of CA patients Number of normal patients Deep-ICU CMS LR RF NEWS

20 ≤ age < 40 0 47 - - - -

40 ≤ age < 60 20 208 0.960 0.906 0.908 0.894

60 ≤ age < 80 44 418 0.912 0.888 0.875 0.867

80 ≤ age 31 257 0.910 0.855 0.860 0.832

Group by gender Number of CA patients Number of normal patients Deep-ICU CMS LR RF NEWS

Male 579 62 0.919 0.891 0.886 0.872

Female 351 33 0.929 0.863 0.871 0.851

Group by APACHE II score Number of CA patients Number of normal patients Deep-ICU CMS LR RF NEWS

0 ≤ score < 15 21 407 0.934 0.889 0.905 0.863

15 ≤ score < 25 39 363 0.900 0.853 0.853 0.829

25 ≤ score 23 75 0.932 0.897 0.867 0.896

15 ≤ score < 25 39 363 0.900 0.853 0.853 0.829

25 ≤ score 23 75 0.932 0.897 0.867 0.896

LR: Logistic Regression; RF: Random Forest; NEWS: National Early Warning Score; CA: Cardiac Arrest; ICU: Intensive care
unit; CMS: Central Monitoring System.

FIGURE 3. Absolute SHapley Additive exPlanations (SHAP) values of (A) each vital sign and (B) each sequence. BT:
body temperature; SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: heart rate; RR: respiratory rate.
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FIGURE 4. Comparative calibration analysis between the National EarlyWarning Score (NEWS) and our model. ECE:
expected calibration error.

lustrated in Fig. 4, which visually highlights its improved
alignment with the observed outcomes. This evidence signifies
that our model provides more reliable and trustworthy prob-
ability estimates for IHCA in ED-ICU settings than NEWS.
Therefore, improved calibration can enhance clinical decision
making by offering accurate risk estimation, thus enabling
timely interventions to prevent IHCA.

4. Discussion

In this study, we developed and validated a novel real-time
prediction score (Deep-ICU CMS) to stratify the risk of IHCA
in 24 h for patients admitted to ED-ICUs. The Deep-ICU
CMS model had a higher discriminating performance than the
commonly used EWSs, NEWS and SPTTS, with an AUROC
score of 0.923 (95%CI, 0.919–0.929) compared to an AUROC
of 0.864 (95% CI, 0.860–0.871), along with an AUROC of
0.734 (95%CI, 0.729–0.744) for the prediction of IHCAwithin
24 h (Table 5 and Fig. 2). This high prediction performance
was maintained even when the prediction time was shortened
to 2 h (Table 6). Higher specificity was noted, with the
same sensitivity as NEWS, for all cutoff scores; this means
that lower alarms were produced regardless of any sensitivity
cutoff. The reduction rate ranged from 20.0% to 48.0% when
compared to NEWS, which overcame the inherent limitations
of conventional EWSs which tend to have a high false alarm
rate [33, 34] and can also lead to alarm fatigue in the medical
staff in charge and ultimately a desensitization to false alarms
(Table 7) [35]. Attenuating alarm fatigue may rescue medical
staff who are responsible for critical care from information that
can be overlooked in ICUs. Furthermore, higher sensitivity
was demonstrated at the same specificity level (Table 7). Cal-
ibration performance, along with discrimination performance,
which should be considered when judging model accuracy

[36, 37], significantly higher than that of NEWS (Fig. 4).
The overall performance, including AUROC, specificity, false
alarm rate, sensitivity, and calibration of the Deep-ICU CMS
for predicting IHCA in 24 h for ED-ICU patients, outper-
formed that of NEWS.
To the best of our knowledge, this study is the first to stratify

the risk of IHCA in patients in ED-ICUs, especially in real-
time. Global studies relating to ED-ICUs are sparse as this is
a relatively new system that has been implemented for only
one or two decades. In South Korea, patients admitted to
the ED-ICU tend to have higher acuity and mortality rates
than those admitted to formal ICUs [17]. Early-goal directed
therapy and reassessment have been emphasized over recent
years to reduce mortality in critically ill patients [38–40]. The
consensus on the need for timely reassessments through the
continuous monitoring of critical patients is crucial if we are
to improve survival, and safety; this strategy is becoming
widely accepted [41], while an increased number of monitored
parameters leads to complexity in terms of interpretation and
the burden of documentation involved [42, 43]. Despite the
accuracy of laboratory blood tests, which can influence up to
70% of diagnostic or treatment decisions, unnecessary redun-
dant and repeated laboratory tests have recently been raised as
a concern [44]. On the other hand, vital signs are recorded
every hour at a minimum without any extra cost in most ICUs.
Moreover, in terms of real-time prediction models, vital sign-
basedmodels tend to bemore appropriate owing to the inherent
nature of short-term interval input time, therefore providing
prediction scores at least on an hourly basis.
The conventional EWSs that are widely used in clinical

practice to predict patient acuity, such as the APACHE II and
SAPS II, are usually static, use data within 24 h of admission,
lack the ability to predict patient acuity in real- time, and
do not reflect the change in a patient’s condition through



95

admission and treatment [45]. Regardless of their prediction
performance, the poor calibration of conventional EWSs has
been reported in several recent studies [36, 37, 46].

To our knowledge, no model has attempted the risk strati-
fication of IHCA for ED-ICU patients, and few models have
tried to predict IHCA in ICU patients based on machine learn-
ing. Most previous researchers chose to compromise the pre-
diction window by shortening the prediction time to guarantee
prediction accuracy, as prediction performance (Compared
in Table 11) [47–49], otherwise referred to as prediction er-
ror, falls dramatically when the time of prediction, the so-
called “prediction horizon” increases, even if a deep-learning
technique is applied [50–52]. Our model maintains robust
performance with a 24 h prediction window, meaning that it
can predict targeted events during the next 24 h if clinically
implemented; this differs from other models that only preserve
prediction performance when predicting events during the next
few hours.

Another means of improving prediction performance is to
provide diverse information to the model, including laboratory
tests, vast nursing records, and other data that are not always
available in real clinical practice [47, 53, 54]. Most model-
development protocols are based on retrospective studies and
multivariate inputs, and are therefore unable to evade the
problem of missing values. Several guidelines, including
STrengthening the Reporting of OBservational studies in Epi-
demiology (STROBE), have been published to correct statis-
tical errors in retrospective cohort studies; however, many of
these guidelines have been overlooked [55, 56]. Missing data
can lead to low performance but can also distort the entire study
through selection bias, which can potentially invalidate the
entire study [55, 57]. Our model used only the four classic vital
signs, the age of patients and their time of measurements; these
are parameters that are rarely missing in the ICU or general

ward. Consequently, this strategy is expected to have the
same outstanding performancewhen compared to othermodels
developed to date when implemented in real-world practice
[45, 47–49].
Another important consideration during model development

was the selection of outcomes to predict clinical deterioration.
Controversies remain with regards to defining clinical deteri-
oration, and several studies have defined IHCA as the most
important outcome, with no objections to its inclusion in the
clinical deterioration criteria [58]. Previous large randomized
studies across the world have chosen complex outcomes, in-
cluding IHCA, unplanned ICU transfer (UIT) and mortality,
to evaluate the effect of Rapid Response System (RRS) im-
plementation due to the low number of patients anticipated to
reach the individual components of this endpoint [59]. This
trend continued for various reasons: for example, death and
UIT cases are well clarified and defined in most datasets and
contribute to a large portion of the prediction performance in
both conventional and deep-learning-based EWSs [60, 61].
Our model was intended to focus only on IHCA cases while
maintaining a high degree of robustness.
Nevertheless, a dramatic improvement in the mortality of

critically ill patients has been demonstrated since its implemen-
tation. ICUmortality remains high, ranging from 13% to 20%,
as reported in recent studies from the United States and Europe
[62, 63]. Financially, the US spends approximately $82 billion
annually on ICU admissions, accounting for approximately
0.66% of the US gross domestic product (GDP) [64]. With
appropriate staff, monitoring and treatment, it is possible to
save almost $13 million ICU costs on an annual basis [65].
Our model also alleviates the financial burden on patients by
implementing an ED-ICU system.
If implemented in a real-world ED-ICU, Deep-ICU CMS

will help medical staff to stratify IHCA risks in real-time. This

TABLE 11. Comparative analysis of prediction models in recent studies.
Prediction model Year of

publication
Target

prediction
Data source Input features Prediction

horizon
AUROC

performance
Deep-ICU CMS - IHCA ED-ICU of

Wonju Severance
Christian
Hospital

Four vital signs 24 h 0.923

Sung et al. [47] 2021 Multiple
events

(mortality,
sepsis, AKI)

ICU of the
National Health

Insurance
Corporation Ilsan

Hospital

Five vital signs,
10 laboratory
results, GCS

12 h (mortality,
AKI), 6 h
(sepsis)

0.938 (mortality),
0.738 (sepsis),
0.760 (AKI)

Kim et al. [48] 2020 IHCA ICU of the Asan
Medical Center

Vital signs,
laboratory

results, SOFA
score

24 h, 48 h 0.875 (24 h),
0.841 (48 h)

Yijing et al. [49] 2022 IHCA MIMIC-III
dataset

Four vital signs 2 h 0.94

AUROC: Area Under Receiver Operating Characteristics; IHCA: In-hospital Cardiac Arrest; AKI: Acute Kidney Injury; GCS:
Glasgow Comma Scale; SOFA: Sequential Organ Failure Assessment; ICU: Intensive care unit; CMS: Central Monitoring
System; ED-ICU: emergency department-based intensive care unit; MIMIC: Medical Information Mart for Intensive Care.
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stratificationwill helpmedical staff to identify patients with the
highest acuity and provide them with the optimal resuscitation
method, including more invasive procedures such as Continu-
ous Renal Replacement Therapy (CRRT) and Extracorporeal
Membrane Oxygenation (ECMO). In addition, the model may
provide insights that prompt review and adjustment of the
initial resuscitation strategy. The improvement of mortality
would also be anticipated by preventing IHCA. The prompt
stabilization of critically-ill patients with Early Goal Directed
Therapy (EGDT) is expected to reduce ICU stays and financial
burden. The faster turn-over of ED-ICU beds will help to
mitigate ED overcrowding leaving room to faster admission
from ED to ICU. Based on the AHA, 48% of the surveyed
hospitals in the US were deficient in terms of the number of
critical care staff [66]. In a recent paper, one proposed way to
solve this problem was the adoption of artificial intelligence
(AI) to assist information processing and the facilitation of
treatment [67]. Deep-ICU CMS is poised to meet these prereq-
uisites, given its demonstrated proficiency in alarm reduction
and IHCA prediction in contrast with conventional methods.
Our study and the model itself have some limitations, espe-

cially with regards to implementation in the real-word. First,
the studywas conducted retrospectively in a tertiary single cen-
ter; hence, the results need to be validated externally in other
ED-ICU centers, to reduce bias. A well-designed multicenter
and retrospective study should be conducted to further inves-
tigate patient safety and efficacy when implemented in the
real-world. Second, it is necessary to conduct a meticulously
planned prospective clinical trial to provide additional evi-
dence for the efficacy of the Deep-ICU CMSTM as a screening
tool in clinical practice. This prospective trial should seek to
demonstrate overall ED-ICUmortality improvement following
implementation of the model. Third, our findings were derived
from a solitary tertiary care hospital that included a regional
emergency center with a high level of acuity, but included a
relatively small number of patients. Consequently, it may be
unreasonable to anticipate comparable advantages when im-
plementing the Deep-ICU CMSTM in all hospitals. Therefore,
the generalizability of our results is limited.

5. Conclusions

The ED-ICU is a relatively new approach aimed at improving
patient outcomes. Nonetheless previous studies have shown
advancements in the reduction of mortality rates; furthermore,
there is notable potential for enhancing patient outcomes and
ensuring patient safety. There is a lack of risk stratification
methods that are relevant for patients admitted to ED-ICUs.
This is the first study to report a model for predicting IHCA
in an ED-ICU. A higher predictive power was evident when
compared to conventional EWSs and artificial intelligence-
based models for the prediction of ICU-admitted patients,
even with longer prediction windows and low input features.
Given the scarcity of research in ED-ICU settings, our findings
contribute valuable insights to the optimization of critical care
delivery for patients admitted from EDs.
The optimization of initial resuscitation, dealing with the

overcrowding and shortage of EDs and ICUs, including med-
ical staff, has become increasingly problematic of late. Deep-

ICU CMS is poised to meet the prerequisites and yield better
outcomes and safety measures for critically ill patients admit-
ted from EDs with ED-ICU systems.
Our research has several limitations, due to it being a retro-

spective study based in a single center. Before being imple-
mented in the real world, a well-designed multicenter retro-
spective study for external validation should be undertaken to
seek external validation and reduce bias. Furthermore, a well-
designated multicenter prospective study, including external
validation, is expected to provide additional evidence and
clinical impact in real-world practice.
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