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Abstract
Sepsis is a systemic syndrome characterized by widespread inflammatory responses
induced by pathogenic microorganism invasion into the body, with increased suscep-
tibility to major organs. Sepsis-induced cardiomyopathy is characterized by reversible
myocardial depression or injury, primarily presenting as acute heart failure and/or
arrhythmias triggered by sepsis. The mortality rate substantially increases when septic
patients develop sepsis-induced cardiomyopathy. The cholinergic anti-inflammatory
pathway (CAP) regulates inflammatory responses through the release of acetylcholine
(ACh) via the vagus nerve and acts upon α7 nicotinic acetylcholine receptors
(α7nAChR) on immune cells to suppress pro-inflammatory sytokines synthesis. In this
review, we provide a concise overview of the current understanding of the α7nAChR-
mediated CAP in sepsis-induced cardiac injury, with a primary focus on α7nAChR
involvement in immune regulation.
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1. Introduction

Sepsis, a syndrome marked by systemic inflammatory re-
sponses triggered by the intrusion of pathogenic microorgan-
isms, especially bacteria, threatens human health due to its
elevated incidence and mortality rates [1]. It can lead to multi-
organ damage, with the heart being particularly susceptible.
Sepsis-induced cardiomyopathy is characterized by reversible
myocardial depression or injury, primarily presenting as acute
heart failure and/or arrhythmias triggered by sepsis. The
mortality rate substantially increases when septic patients de-
velop sepsis-induced cardiomyopathy [2]. Among septic pa-
tients, approximately 44% exhibit cardiac dysfunction, which
has a mortality rate of nearly 70%. Comparatively, those
without cardiac dysfunction have a lower mortality rate of
only 20% [3]. Hence, effectively mitigating sepsis-induced
myocardial damage and enhancing cardiac function are piv-
otal in preventing and treating sepsis. Recent studies high-
light the inflammatory response provoked by sepsis as a pri-
mary contributor to sepsis-induced cardiac injury [4], and
efficiently suppressing this cardiac inflammatory response is
crucial for mitigating sepsis-induced myocardial damage and
improving cardiac function. However, commonly utilized
anti-inflammatory drugs in clinical practice, such as gluco-
corticoids, can not only suppress immune responses but also
facilitate infection spread and complicate clinical treatment

[5]. Thus, identifying novel interventions and targets to inhibit
the cardiac inflammatory response in sepsis has become an
urgent scientific challenge. Research suggests that inflamma-
tory responses can be suppressed following the activation of
the vagus nerve. In this regard, the effects of vagal nerve
excitation on inhibiting sepsis-related inflammatory responses
have garnered widespread attention from scholars globally
[6]. This review summarizes the current understanding of the
α7nAChR-mediated cholinergic anti-inflammatory pathway
(CAP) during sepsis-induced cardiac injury, with a primary
focus on the involvement of α7nAChR on immune regulation.

In sepsis experiments, vagus nerve stimulation has been
demonstrated to effectively inhibit the release of inflammatory
sytokines, such as tumor necrosis factor α (TNF-α), inter-
leukin 1 (IL-1) and high-mobility group box 1 (HMGB1),
which subsequently leads to the attenuation of the inflamma-
tory response, reduction of sepsis-inducedmyocardial damage,
and an associated improvement in survival rates. Thus, it is
indicated that the vagus nerve assumes a pivotal role in the
modulation of inflammation [7]. Research focused on the
cecal ligation and puncture (CLP) model in septic rats showed
that vagus nerve stimulation can significantly enhance survival
rates during the early postoperative period, specifically within
8 hours post-surgery [8]. Moreover, investigations conducted
by Huston et al. [9] emphasize that vagus nerve stimulation
can ameliorate systemic inflammatory responses and improve
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survival rates in a CLP sepsis model. Nonetheless, the precise
mechanisms through which the vagus nerve mitigates sepsis-
induced myocardial damage remain an area of ongoing inves-
tigation.
Among nicotinic receptors, α7 Nicotinic Acetylcholine Re-

ceptor (α7nAChR) is the predominant subtype reported in
mammals and has been shown to be important in various
diseases [10–13]. Research has shown an elevated expres-
sion of α7nAChR in monocytes and macrophages [14, 15].
ACh, a neurotransmitter released from vagus nerve termi-
nals, activates α7nAChR on macrophages to inhibit the retic-
uloendothelial system and suppress macrophage activation,
which subsequently reduces the production of inflammatory
sytokines in both serum and tissues. This physiological pro-
cess is recognized as CAP. It comprises the vagal nerve, Ach
and its receptor (α7nAChR) and elicits a more rapid and
direct response to systemic inflammatory reactions compared
to humoral anti-inflammatory pathways. Consequently, it
exerts pronounced anti-inflammatory effects and can attenuate
cardiac inflammatory responses in sepsis. However, a compre-
hensive overview on α7nAChR-mediated CAP during sepsis-
induced myocardial damage remains lacking [16].

2. α7nAChR-mediated CAP effects on
immune cells in sepsis-induced
cardiac injury

2.1 T lymphocyte
As previously described, α7nAChR is essential for inflam-
matory reactions and is overexpressed on T cell surface [17].
Both deficient and over-proliferation of T cells have been
shown to be linked with inflammatory diseases. In addition,
both nicotine and ACh have demonstrated the potential to
inhibit T cell proliferation in response to mitogenic stimuli
[18, 19], and increased infiltration of T lymphocytes has been
shown to exacerbate sepsis-induced myocardial injury [20].
Additionally, it has been reported that the anti-proliferative
effect of cholinergic agents on T cells is counteracted in the
presence of α7nAChR antisense siRNA [21, 22], indicating
the pivotal role of α7nAChR during T cell differentiation.
Activation of α7nAChR leads to the functional suppression
of Th1 and Th17 cells due to reduced synthesis of tumor
necrosis factor-α (TNF-α), interleukin-2 (IL-2), interferon-
γ (IFN-γ), interleukin-17 (IL-17) and interleukin-22 (IL-22)
[23]. A previous research showed that in healthy individuals,
the antagonism of α7nAChR may enhance Treg-mediated im-
munoinhibitory effects [24].

2.2 B cell
Regular B lymphocytes, as well as B lymphocyte-derived cell
lines, possess a variety of ACh receptors, including α7nAChR
[25]. Using single-cell sequencing, Martini et al. [26] iden-
tified inflammatory and immune cell subtypes in diseased
myocardium, revealing an abundance of B lymphocytes in the
heart of healthy mice. In addition, further research suggests
that the stimulation of α7nAChR participates in calcium ion
(Ca2+) signal transduction, one of the important molecular
events that facilitate the development of B cells [27]. More-

over, α7nAChR plays a role in negatively regulating adaptive
immunity by suppressing the production and release of vari-
ous pro-inflammatory cytokines, including TNF-α, IL-6 and
IFN-γ, in B cells, which inhibits immunoglobulin G1 (IgG1)
synthesis [28, 29]. Therefore, it is plausible to speculate that
in the context of sepsis-induced myocardial injury, the IgG1
α7nAChR-mediated CAPmay demonstrate anti-inflammatory
effects by promoting B lymphocyte proliferation within the
heart.

2.3 Macrophages
Throughout the course of sepsis, inflammation intensifies,
leading to an increased release of inflammatory cytokines
by innate immune cells, notably macrophages, upon their
activation. This inflammatory response is a crucial factor
triggering myocardial damage. Present literature indicates that
macrophages, originating from monocytes, play a vital role
in various aspects of myocardial injury repair. Macrophages
exhibit two distinct phenotypes, categorized as M1 and M2.
The M1 subtype releases pro-inflammatory cytokines, pro-
moting pro-inflammatory effects, whereas M2 macrophages
secrete anti-inflammatory cytokines, contributing to an anti-
inflammatory milieu [30]. Maintaining a balanced polariza-
tion of macrophages is of paramount importance for efficient
toxin clearance and tissue repair. Thus, the regulation of
macrophage polarization holds substantial significance in ame-
liorating sepsis-induced myocardial damage.
In the cardiac macrophages of mice, CAP primarily demon-

strates anti-inflammatory effects via two distinct signaling
pathways: the Janus kinase 2/Signal Transducer and Activator
of Transcription 3 (JAK2/STAT3) and Phosphoinositide 3-
kinase/Protein Kinase B (PI3K/Akt) [31, 32]. These signaling
pathways can impede the activation of Nuclear Factor-κB
(NF-κB) inhibitory protein kinase, thus preventing NF-κB
inhibitory protein phosphorylation. As a result, NF-κB is
inhibited, leading to the initiation of an anti-inflammatory
response [33].

2.4 Dendritic cells (DCs)
DCs are recognized as the most proficient antigen-presenting
cells (APCs) [34, 35], and they hold significant relevance
in various ailments, including inflammatory bowel disease,
autoimmune myocarditis, systemic lupus erythematosus, and
sepsis [35–37]. The functional integrity and activity of DCs
are intricately linked to septic patients’ survival and prognosis,
and related dysfunctions are considered a primary contributor
to sepsis-induced immunosuppression, aligning with increased
mortality and unfavorable outcomes [38, 39]. Given the no-
table expression of α7nAChR in DCs, their functions undergo
inevitable alterations upon exposure to nicotine or ACh stimuli
[40, 41]. The maturation of DCs in the presence of nicotine
significantly impairs endocytosis and phagocytic activities,
accompanied by a substantial reduction in their capacity to
produce interleukin-12 (IL-12) and induce APC-dependent T
cell responses [40, 41]. As ACh competitively antagonizes
nicotine, CAP can, therefore, alleviate sepsis-induced myocar-
dial damage by mitigating the functional impairments in DCs.
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3. Conclusion

The uncontrolled inflammatory response in sepsis plays a
crucial role in the development of sepsis-induced myocardial
damage. CAP, serving as a natural anti-inflammatory mecha-
nism, displays rapid and precise characteristics. It can enhance
the regulatory response of various immune cells during sep-
sis, thus mitigating sepsis-induced myocardial damage. This
proposition is supported by evidence from animal experimental
models, offering a new avenue for potential treatments of
sepsis-induced myocardial damage.
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