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Abstract

Background: The role of remote ischemic preconditioning (RIPC) in coronary heart
disease patients remains uncertain. This study was aimed to assess the RIPC influence
on T-lymphocyte mitochondrial damage index (MDI), high-sensitivity troponin-T (hs-
TnT) concentration, and the perioperative incidence of adverse events in ST-segment
elevation myocardial infarction (STEMI) patients having exceeded the window for
emergency reperfusion therapy. Furthermore, the goal was to determine myocardial
protective effects of RIPC and investigate its underlying mechanisms. Methods:
STEMI patients having surpassed the reperfusion therapy time window were randomly
assigned to RIPC (n = 32) and control (n = 32) groups. RIPC group underwent
upper limb RIPC (four cycles of 5-min cuff inflation to 200 mmHg followed by 5-
min of deflation). T-lymphocyte MDI and hs-TnT concentrations were determined
once on admission, and then 2 hours before the percutaneous coronary intervention
(PCI), conducted after 10 days. Perioperative incidence for no-reflow, cardiac rupture
and malignant arrhythmias were recorded. Results: T-lymphocyte MDI and hs-TnT
concentrations upon admission did not differ much in both groups, however, there
was a decrease after 10 days, and of greater magnitude in RIPC group. Conclusions:
RIPC group exhibited lower incidence of no-reflow during PCI compared to that
of control (p = 0.03). RIPC has the potential to mitigate perioperative myocardial
injuries in STEMI patients by reducing T-lymphocyte MDI, inhibiting myocardial cell
death, and lowering no-reflow risk during PCI. Clinical Trial Registration: Registered
website: https://clinicaltrials.gov/search?cond=NCT04766749. Registered number:
NCT04766749. Registered date: 10/02/2021.
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1. Introduction

ST-segment elevation myocardial infarction (STEMI) is the
severe form of coronary heart disease caused by the insuffi-
cient blood supply to myocardium because of coronary artery
occlusion. It is the leading cause of global mortality and
disability. Numerous STEMI patients in China seek medical
attention beyond the critical time window to undergo emer-
gency revascularization, which may cause complications such
as cardiac rupture, cardiogenic shock, and arrhythmia. They
are influenced by uneven medical resource distribution and
the other factors. Early percutaneous coronary intervention
(PCI) reperfusion can improve patient prognosis, however, it
may exacerbate myocardial damage. Certain STEMI patients
experience inadequate restoration of myocardial blood perfu-
sion even after the coronary artery recanalization which lead
to no-reflow condition [1]. The mechanisms of coronary no-

reflow or slow flow are complex that involve microvascular
dysfunction, embolism, and ischemia-reperfusion injury (IRI)
[2]. Optimizing the perioperative management strategies for
these patients is thus imperative.

T-lymphocytes have role in STEMI where they respond to
IRI through anti-inflammatory or pro-inflammatory activation
[3, 4]. Autopsies of myocardial infarction (MI) patients have
revealed the T-lymphocyte infiltration in peri-infarct zone,
while the activated T-lymphocytes are observed in the walls
of infarct- and non-infarct-related arteries [5]. Furthermore,
studies have demonstrated the impairment in T-lymphocyte
function and mitochondrial dysfunction in acute myocardial
infarction (AMI) patients [6]. They accelerate inflammation
and facilitate the synthesis and release of large amounts of
reactive oxygen species (ROS) into cytoplasm to exacerbate
the myocardial injury [7].
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Mitochondria are the dynamic organelles with a mecha-
nism of mitophagy which removes the damaged mitochon-
dria caused by mild stress [8]. Severe stress can induce the
mitochondrial permeability transition and impair mitophagy
[9], which hinders the abnormal mitochondrial elimination and
increases mitochondrial mass (MM) [10]. MM then effects the
mitochondrial function [11, 12]. Remote ischemic precondi-
tioning (RIPC) involves repeated, transient, and non-invasive
ischemic preconditioning of distal organs (mesentery, kidneys
and limbs) in reducing the secondary IRI risk of vital organs
after the acute ischemia by activating neural and humoral sig-
nalling pathways [13]. RIPC effects are the subject of ongoing
debate. Some studies indicate that RIPC reduces infarct size
and improves the outcomes in MI patients [14, 15], however,
others reveal contrasting conclusions [16]. Preliminary studies
of our team demonstrate that RIPC enhances coronary micro-
circulation, reduces IRI, and improves the prognosis in coro-
nary heart disease patients [17, 18]. Current study was aimed
to explore the RIPC impact on T-lymphocyte mitochondrial
function in STEMI patients and its perioperative myocardial
protective effects.

2. Materials and methods
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2.1 Patients

STEMI patients were enrolled in this study who had exceeded
the window for emergency reperfusion therapy and admitted
to our hospital between October 2022 and February 2023.
Patients were randomly grouped into RIPC (n=32) and control
(n = 32). Inclusion criteria were as follows: (1) age 18 to 80
years; (2) STEMI onset >12 h with no indication of emer-
gency reperfusion therapy; (3) left ventricular ejection fraction
(LVEF) of >40%; (4) availability of clinical and biological
data; and (5) provision of written informed consent. Exclusion
criteria included: (1) age >80 years; (2) inability towards
RIPC treatment (because of the conditions like limb defects
or difficulty in ruling out the deep vein thrombosis of lower
limbs); (3) structural heart disease; (4) heart failure with <40%
LVEF; (5) ongoing infection, allergies, autoimmune diseases,
or usage of anti-inflammatory, antioxidant, or antiviral medi-
cations; (6) poor blood pressure control (systolic >180 mmHg
or diastolic >110 mmHg), heart rate (>100 beats/min); (7)
aortic valve insufficiency, valvular heart diseases, congenital
heart disease along with heart failure, or severe arrhythmia; (8)
bleeding, peptic ulcers, coagulopathies, cerebral haemorrhage,
or craniotomy in the past six months; (9) poor general con-
dition, liver or kidney insufficiency, or malignant neoplasms;
(10) contraindications for aspirin, heparin, clopidogrel, and
paclitaxel; and (11) allergy to the contrast agents. Fig. | shows
study flowchart.

Patients with STEMI who had exceeded the window
for emergency reperfusion therapy
(n=64)

A

[ Assess T-lymphocyte MDI and hs-TnT concentrations upon admission ]

A

Control group
(n=32)

A

[ 10 days of drug treatment ]

A 4

RIPC group
(n=32)

[ 10 days of drug and RIPC treatment ]

A 4

Assess T-lymphocyte MDI and hs-TnT concentrations 2 hours before PCl and
perioperative incidence of no-reflow, cardiac rupture, and malignant arrhythmias

FIGURE 1. Study flowchart. STEMI: ST-segment elevation myocardial infarction; MDI: mitochondrial damage index; hs-
TnT: high-sensitivity troponin-T; RIPC: remote ischemic preconditioning; PCI: percutaneous coronary intervention.
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2.2 RIPC treatment methods

Patients were laying in the supine position. A cuff was placed
on one of the upper limbs and inflated to 200 mmHg which
obstructed the arterial blood flow for 5 min followed by 5-
min of deflation [19]. The cycle was repeated four times
using Jinmaibo ischemic preconditioning therapeutic instru-
ment (L300A, GTHR Medical Technology company, Shen-
zhen, Guangdong, China). RIPC therapy was given twice a day
(morning and evening) for 10 days. It started from the time of
admission to the day when PCI was conducted. Furthermore,
one RIPC session was carried out 40 min prior to the procedure.
Patients in the control group also received cuffs, however, they
were not inflated.

2.3 Study measures

The patients’ baseline data were recorded pertaining to sex,
age, body mass index (BMI), smoking and drinking history,
hypertension, diabetes, dyslipidemia, time from onset till pre-
sentation, LVEF, malignant arrhythmias during hospitaliza-
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tion, and cardiac rupture. High-sensitivity troponin-T (hs-
TnT) concentrations and T-lymphocytes MDI were recorded
on admission. After 10 days of drug treatment as per the guide-
lines, T-lymphocyte MDI and hs-TnT concentrations were
reassessed 2 hours before PCI. Interventional physician docu-
mented the distribution of culprit vessels, lesion length, diam-
eter, and perioperative incidence of no-reflow, cardiac rupture
and malignant arrhythmias.

In this study, thrombolysis in myocardial infarction (TIMI)
flow grade classification was employed to evaluate the flow
after PCI in culprit coronary artery. No-reflow was defined as
the TIMI flow grade <III without the coronary spasm or dis-
section. Flow cytometry was performed with a mitochondrial
dye that selectively binds to mitochondria for determining MM
via median fluorescence intensity (MFI) [12]. Specific anti-
bodies cluster of differentiation (CD)3, CD4 and CDS8) were
used to label the lymphocyte subsets for getting respective cell
counts. This study derived the mitochondrial damage index
(MDI) for lymphocyte subsets using an algorithm based on
MEFI and subset cell counts (Fig. 2).
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FIGURE 2. Flow cytometry analysis of T cell sub-populations. Note: (A) CD45-PerCP-Cy5.5-H and SSC-H plot identified
Lymph cells as CD45 high and SSC low. (B) CD3-FITC-H and SSC-H plot identified CD3+ T cells. (C,D) Quadrant gate defined
T cells as CD3+ CD4+, and CD3+ CD8+.

Abbreviations: SSC: side scatter; Percp-cy5.5: peridinin chlorophyll protein-Cyanine5.5; PECy7: phycoerythrin-Cyanine7;
FITC: fluorescein isothiocyanate.
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2.4 Statistical analysis

Normally distributed continuous variables were expressed
as mean =+ standard deviation. The inter-group differences
were assessed using one-way analysis of variance (ANOVA).
Non-normally distributed data were presented as median and
quartiles. The between-group comparisons were processed
using Mann-Whitney U test. Two-way repeated measures
ANOVA analyzed the repeated measures data. Bonferroni
correction was employed as the post hoc test to adjust p-
values. Categorical data represented the number of cases and
percentages. Inter-group differences were evaluated by the
Chi-squared test. All the statistical analyses were conducted
as two-tailed tests with statistical significance set at p <
0.05. The data were analyzed using SPSS version 22.0 IBM,
Armonk, NY, USA).
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3. Results

The groups had no statistically significant differences pertain-
ing to patient age, male-to-female ratio, BMI, LVEF, hyperten-
sion, hyperlipidemia, diabetes comorbidity ratio, smoking and
drinking history ratio, and duration from onset to presentation
(Table 1).

No significant differences were found in the characteristics
of coronary artery lesions of two groups. Perioperative times
to cardiac rupture, mechanical injuries, and malignant arrhyth-
mias did not differ much for the groups (Table 2). However,
RIPC group had lower incidence of no-reflow during PCI
compared to control (p = 0.03).

No significant differences were found in hs-TnT levels, and
MDI of CD3+, CD4+ and CD8+ T-lymphocytes between the
groups upon admission. Patients in RIPC group exhibited
reduced hs-TnT levels and MDI of CD3+, CD4+ and CD8+
T-lymphocytes after 10 days of standard treatment (Table 3).

TABLE 1. The baseline characteristics.

RIPC Control
(n=32) (n=132) -
Age (yr) 55(53.25,57.75) 58 (51.00, 65.75) 0.155
Male 20 (62.50) 17 (53.10) 0.448
Hypertension 22 (68.70) 16 (50.00) 0.127
Diabetes mellitus 8(25.00) 11 (34.30) 0.412
Hyperlipidemia 11 (34.30) 7 (21.80) 0.266
Drinking history 16 (50.00) 14 (43.70) 0.616
Smoking history 15 (46.80) 18 (56.20) 0.453
BMI (kg/m?) 27.31 (22.80, 29.84) 25.91 (21.80, 30.38) 0.957
LVEF (%) 43.5 (38.25, 48.00) 46.0 (41.00, 53.00) 0.124
Time from onset to presentation (h) 34 (30.00, 41.00) 30 (20.25, 39.75) 0.141

BMI: body mass index, LVEF': left ventricle ejection fraction; RIPC: remote ischemic preconditioning. Smoking defined as >1
piece/day for 6 consecutive or cumulative months, Drinking defined as more than once/week for continuous or cumulative 12
months. Values as the median (interquartile range) or n (%).

TABLE 2. Coronary lesion features.

RIPC Control
(n=132) (n=132) p

Target vessel

LAD/D 17 (53.10) 14 (43.70)

LCX/OM 9 (28.10) 7 (21.80) 0.366

RCA/PDA/PLV 6 (18.70) 11 (34.30)
Lesion length (mm) 26 (20.00, 29.00) 25 (18.25, 28.00) 0.353
Reference vessel diameter (mm) 3.2(2.83,3.58) 3.1(2.93, 3.88) 0.356
Cardiac rupture 1(3.10) 0 0.313
Malignant arrhythmias 2 (6.30) 2 (6.30) 1.000
No-reflow 3 (9.40) 10 (31.30) 0.030

LAD/D: left anterior descending/diagonal branch;, LCX/OM: left circumflex/obtuse marginal branch; RCA/PDA/PLV: right
coronary artery/posterior descending artery/posterior lateral vessel;, RIPC: remote ischemic preconditioning. Values as the
median (interquartile range) or n (%,).
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TABLE 3. The hs-TnT concentrations and T-lymphocyte MDI on admission and before PCI.

RIPC
(n=32)
2032.46 (1372.46, 2343 .47)
226.27 (159.85, 272.07)

Pre hs-TnT (pg/mL)
Post hs-TnT (pg/mL)

Pre CD3+ TLMDI 5.26 (4.77, 6.09)
Post CD3+ TLMDI 435 (4.10, 4.61)
Pre CD4+ TLMDI 5.40 (4.72, 6.41)
Post CD4+ TLMDI 4.71 (4.59, 5.22)
Pre CD8+ TLMDI 4.30 (3.82, 4.58)
Post CD8+ TLMDI 2.68 (2.26, 2.99)

Control

(n =32) P
2048.02 (1665.01, 2533.14) 0.175
270.71 (202.45, 337.14) 0.008
5.38 (4.86, 5.67) 0.742
4.68 (4.36, 4.80) 0.007
5.38 (4.73, 5.94) 0.702
5.05 (4.71, 5.48) 0.045
4.17 (3.28, 4.65) 0.347
2.85 (2.67, 3.25) 0.031

hs-TnT: high-sensitivity troponin-T; TLMDI: T-lymphocytes mitochondrial damage index; RIPC: remote ischemic precondition-

ing. Values as the median (interquartile range).

4. Discussion

This preliminary study is the first to investigate effect of pre-
PCI RIPC on T-lymphocyte mitochondrial function in STEMI
patients beyond the reperfusion time window. Results show
that: (1) the mitochondrial damage index of CD3+, CD4+
and CD8+ T-lymphocytes, and hs-TnT concentrations in RIPC
group are decreased compared to the control; (2) the incidence
of no-reflow during PCI in RIPC group is reduced compared
to the control.

Evidence suggests T-lymphocytes role in myocardial injury,
healing, and remodelling the post myocardial infarction [3, 20].
CD3+ T cells have the central part in immune system and
can differentiate into CD4+ and CD8+ T-lymphocytes [21,
22]. CD4+ T-lymphocytes further differentiate into subsets
like T helper (Th)1, Th2, Th17 and regulatory (Treg) cells,
depending on the cytokines produced and their surface marker
expressions [23]. Evidence indicates the CD4+ T-lymphocytes
involvement in myocardial injury after the myocardial in-
farction [24]. Cardiac glucocorticoid-induced leucine zip-
per (GILZ) protects the mitochondrial membrane potential
(1¥m) and reduces apoptosis and necrosis. Th17 cells increase
after the myocardial infarction which decrease the cardiac
GILZ [25]. CD4+ T-lymphocytes infiltrate the myocardium
within days of post-myocardial infarction in non-reperfused
hearts and shift to Thl cytokine profile [26, 27] for elevat-
ing Th1/Th2 cell ratio in AMI patients and increasing the
susceptibility to adverse cardiac events [28]. Animal exper-
iments demonstrate that CD4+ T-lymphocytes promote the
myocardial IRI progression. In wild-type and lymphocyte-
deficient recombination activating gene 1 (RAGI1) knockout
mice subjected to transient ischemia-reperfusion, the exper-
imental group shows smaller infarcts. This outcome is re-
versed by CD4+ T-lymphocyte transplantation [29]. Studies
have identified that CD4+ T-lymphocytes secrete interleukin
(IL)-17A and IL-21 to promote IRI progression [26]. Some
studies report the impaired function of Treg cells derived
from CD4+ T-lymphocytes in ischemic cardiomyopathy. This
results in suboptimal immunosuppression, transforming from
anti-inflammatory to pro-inflammatory phenotype, promoting
immune activation, and exacerbating left ventricular remod-
elling [30]. Treg cells suppress pro-inflammatory changes,

reduce inflammatory response after ischemia, and beneficial
for left ventricular remodelling in myocardial infarction [31—
33]. The imbalance of oxidative phosphorylation in mitochon-
drial dysfunction affects CD4+ T-lymphocytes differentiation
and diminishes the number of Treg cells, which triggers se-
ries of inflammatory reactions and exacerbates tissue damage
[34, 35]. The potential mechanisms of RIPC thus include
improving T-lymphocytes mitochondrial function, influencing
T-lymphocytes differentiation, mitigating myocardial damage
by enhancing anti-inflammatory effects, and improving IRI.

RIPC has gained attention since its introduction into clinical
practice because of its simplicity, ease of use, and high safety
profile. Studies have confirmed its cardioprotective effects
where RIPC improves coronary artery IRI and reduces PCI-
related myocardial infarction incidence [36—38]. RIC-STEMI
trial regarding STEMI patients’ prognosis has demonstrated
that RIPC reduces the combined hard clinical endpoint of car-
diac mortality and hospitalization for heart failure [39]. How-
ever, CONDI-2/ERIC-PPCI trial reach the opposite conclusion
where RIPC does not improve the clinical outcomes of STEMI
patients undergoing PCI [40]. Currently, there is no consensus
on the optimal strategy for RIPC. Variations in cycle counts,
ischemic areas, durations, and degrees of compression may
yield diverse outcomes in patients of diverse races. Factors
such as age, diabetes, hypertension, and medication can also
influence the RIPC efficacy. Anaesthetics in surgery such as
propofol may attenuate the cardioprotective effects of RIPC.
However, RIPC has demonstrated safety and thus encouraging
further explorations into optimal strategies, clinical effects,
and underlying mechanisms of RIPC.

Our earlier investigations had confirmed that RIPC im-
proved coronary microcirculation function and alleviated IRI.
In this study, RIPC was implemented to STEMI patients sur-
passing the reperfusion time window. RIPC’s capability was
demonstrated to improve T-lymphocytes mitochondrial func-
tion, mitigate myocardial damage, and reduce the risk of post-
PCI no-reflow. These findings were consistent with the out-
comes of previous studies [41]. However, this study had
certain limitations. Firstly, it was a single-center study with
smaller sample size which introduced bias because of insuf-
ficient sample representation. Secondly, strict inclusion and
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exclusion criteria were ensured. There were no statistical
differences in the demographic characteristics, clinical fea-
tures, and medication used by the RIPC and control groups.
Nonetheless, further research involving the participants from
diverse ethnicities and regions was imperative in providing
geographic clustering and population homogeneity to validate
the study’s findings.

5. Conclusions

RIPC has the potential to reduce no-reflow incidence during
PCI, mitigate the extent of myocardial injury in STEMI pa-
tients by decreasing MDI of T-lymphocytes, improving mi-
tochondrial function, and reducing oxidative stress and in-
flammation.However, the findings need verification through
large-scale studies. This pilot study despite the limitations
has helped in improving the understanding of remote ischemic
preconditioning role in T-lymphocyte mitochondrial damage
index regarding STEMI treatment.

ABBREVIATIONS

AMI, acute myocardial infarction; GILZ, glucocorticoid-
induced leucine zipper; hs-TnT, high-sensitivity troponin-T;
IRI, ischemia-reperfusion injury; LVEF, left ventricular
ejection fraction; MDI, mitochondrial damage index; MM,
mitochondrial mass; MFI, median fluorescence intensity;
PCI, percutaneous coronary intervention; RIPC, remote
ischemic preconditioning; STEMI, ST-segment elevation
myocardial infarction; RAGI1, recombination activating gene
1; IL, interleukin; CD, cluster of differentiation; Th, T helper;
ROS, reactive oxygen species; BMI, body mass index; TIMI,
thrombolysis in myocardial infarction; ANOVA, one-way
analysis of variance; LAD/D, left anterior descending/diagonal
branch; LCX/OM, left circumflex/obtuse marginal branch;
RCA/PDA/PLV, right coronary artery/posterior descending
artery/posterior lateral vessel; TLMDI, T-lymphocytes
mitochondrial damage index; Treg, T regulatory; SSC,
side scatter; Percp-cy5.5, peridinin chlorophyll protein-
Cyanine5.5; PECy7, phycoerythrin-Cyanine7;  FITC,
fluorescein isothiocyanate.
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