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Abstract
Background: Sepsis associated encephalopathy (SAE) is a prevalent form of organ
dysfunction associated with sepsis. There is no overt central nervous system (CNS)
infection accompanying it, yet it carries a significant risk of mortality and can lead
to long-lasting neurological complications. The efficacy of Angong Niuhuang Pill
(AGNH) in enhancing conditions like cerebral ischemia, cerebral trauma and sepsis
has been well-established. Nonetheless, the specific regulatory roles and underlying
mechanisms of AGNH in the progression of SAE remain unexplored. Methods:
The lipopolysaccharide (LPS) treatment was utilized to construct SAE rat model.
Berderson’s neurological examination scoring system was used for scoring. The
levels of genes and iron content were examined through enzyme-linked immunosorbent
assay (ELISA) or the corresponding commercial kits. The prothrombin time (PT),
activated partial thromboplastin time (APTT), thrombin time (TT) and fibrinogen (FIB)
level were confirmed through the automatic coagulation analyzer. The number and
morphology of neurons were evaluated through hematoxylin eosin (HE) staining. The
protein expressions were determined through western blot. Results: The increased
Berderson never function score mediated by LPS treatment was attenuated after AGNH
orDefetoxamine (DFO, ferroptosis inhibitor) treatment, indicating that AGNH improved
neurobehavioral function in juvenile SAE mice. Furthermore, AGNH improved
inflammation and coagulation parameters in young SAE mice. AGNH promoted
neuronal growth and mitigated neuronal damage in juvenile SAE mice. Additionally,
AGNH inhibited ferroptosis and reduced oxidative stress in young SAE mice. Lastly,
it was demonstrated that AGNH promoted nuclear factor erythroid 2-related factor 2 
(Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway through up-regulating the
Nrf2 and GPX4 protein expressions. Conclusions: This study revealed a novel finding
that AGNH has the ability to inhibit GPX4-induced ferroptosis in juvenile SAE mice by
modulating the Nrf2/GPX4 signaling pathway. This breakthrough implies that AGNH
has promising prospects as a therapeutic agent for SAE.
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1. Introduction

Sepsis is one of the global health problems that badly threaten
the lives of human [1, 2]. In cases of sepsis, the dysregulated
inflammatory response can lead to a variety of organ dysfunc-
tions [3]. In the early stage of sepsis, the central nervous
system (CNS) is influenced, and then burgeoned into sepsis-
associated encephalopathy (SAE), accounting for about 50%
of sepsis patients [4, 5]. SAE is characterized by widespread
brain dysfunction, including hallucinations, changes in con-
sciousness, lack of attention and delirium [6]. Nevertheless,

the existing treatment options for SAE are constrained, and
given its significant morbidity and mortality rates, there is
a pressing necessity to investigate the pathophysiology of
SAE and search for innovative pharmaceuticals for clinical
intervention.

Angong Niuhuang Pill (AGNH), firstly published in the
book “Wen Bing Tiao Bian” in the Qing dynasty, is a widely
recognized traditional Chinese patent medicine used to treat
various cerebrovascular diseases [7, 8]. AGNH is mainly
composed of 11 Chinese herbs, such as Bovis Calculus,
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Rhinoceros Horn, Moschus, Margarita, Cinnabaris, Realgar,
Coptidis Rhizoma, Scutellariae Radix, Pearl, Gardeniae
Fructus, Curcumae Radix and Borneolum Syntheticum.
Flavonoids, iridoid glycosides, and alkaloids are the primary
bioactive compounds found in AGNH. Research has shown
that AGNH can effectively ameliorate certain ailments. One
notable example is its ability to regulate the T helper cell
17 (Th17)/Regulatory T cells (Treg) immune equilibrium
and alleviate persistent inflammation in atherosclerosis in
apolipoprotein E (ApoE)-/- mice models [9]. In addition,
AGNH retards the phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit gamma (PIK3CG)/p65/matrix
metalloproteinase 9 (MMP9) signaling to against LPS-
triggered acute lung injury [10]. Moreover, AGNH
demonstrates positive effects in the treatment of chronic
obstructive pulmonary disease [11]. Importantly, AGNH
has also participated into the regulation of the brain-related
diseases. For instance, AGNH can address gut microbiota
dysbiosis to alleviate cerebral ischemia/reperfusion injury
[12]. Furthermore, AGNH reduces ferroptosis in ischemic
and hemorrhagic stroke [13]. Additionally, AGNH possesses
neuroprotective properties that enhance brain injury caused by
ischemia/reperfusion [14]. However, the regulatory functions
and related mechanism of AGNH in SAE progression keep
vague, and need further investigated.
In this work, it is focused on studying the relationship

between AGNH and SAE progression on regulating
glutathione peroxidase 4 (GPX4)-mediated ferroptosis.
The research findings revealed that AGNH has the potential
to inhibit GPX4-induced ferroptosis in juvenile SAE mice by
modulating the Nrf2/GPX4 signaling pathway. This study
suggests that AGNH could serve as a promising candidate for
the pharmaceutical management of SAE.

2. Materials and methods

2.1 AGNH preparation
AGNH was purchased from Guangzhou Baiyunshan
Zhongyi pharmaceutical co., Ltd (Z44020047, Guangzhou,
Guangdong, China). For preparation, AGNH was ground and
dissolved in normal saline using a mortar to form suspensions
of 100 mg/mL.

2.2 Mice model
All experiments were executed by the Guide for the Care and
Use of Laboratory Animals (Ministry of Health, China), and
the approval of this work was gained from the Committee
of First Affiliated Hospital of Xinjiang Medical University
(Approval No. 20230901-11). All mice were kept with free
food and water, with humidity about 65%, temperature about
25 ◦C and a 12 h light/dark cycle.
Twenty-four male C57BL/6 mice (8–10 week) were pur-

chased from Vital River Laboratory Animal Technology Co.,
Ltd. (Beijing, China). The mice were randomly divided into
sham group, lipopolysaccharide (LPS) group, LPS + AGNH
group and LPS + DFO group (N = 6 mice in each group). The
sham group was subjected to no treatment. LPS (Escherichia
coli endotoxin 055:B5, L2880, Sigma-Aldrich, St. Louis, MO,

USA) was administered at 5 mg/kg by intraperitoneal injection
to establish the SAE mouse model [15, 16]. The mice in the
AGNH or DFO treatment group were administered AGNH or
DFO at a dosage of 100mg/kg through intraperitoneal injection
one hour post-LPS treatment. This dosage was calculated
based on the mice’s body weight to mirror clinical drug admin-
istration. Behavioral assessments were conducted after a 24-
hour period. Subsequently, the mice were anesthetized using
2% isoflurane inhalation, euthanized by decapitation and their
brain tissue was excised and promptly frozen.

2.3 Berderson's neurological examination
scoring system
The mice’s behaviors were scored through Berderson’s neuro-
logical examination scoring system. Scores “0”: no apparent
deficit (normal); “1”: not fully extend their left front paw
(mild deficit), “2”: circled to the contralateral side (moderate
deficit); “3”: losing the righting reflexes and the ability (severe
deficit). After 24 h induction, neurological deficit scores were
carefully evaluated in each mouse by an observer blinded to
the study.

2.4 ELISA
The inflammatory cytokines were determined through
ELISA. The tumor necrosis factor-alpha (TNF-α) ELISA
kit (ab208348, Abcam, Shanghai, China) and interleukin-6
(IL-6) ELISA kit (ab222503, Abcam, Shanghai, China) were
employed to examine the levels of TNF-α and IL-6 in serum
in line with the corresponding ELISA kits.

2.5 Detection of PT, APTT, TT and FIB
The coagulation function was assessed by analyzing parame-
ters including prothrombin time (PT), activated partial throm-
boplastin time (APTT), thrombin time (TT) and fibrinogen
(FIB) level using the Sysmex CS-5100 automatic coagulation
analyzer (Sysmex Medical Electronics Co., Kobe, Japan).

2.6 Hematoxylin eosin (HE) staining
After being fixed with 4% paraformaldehyde, the brains of
mice were embedded in paraffin. Brain tissues (Hippocampus
and Cortex) were cut into the 4 µm thickness sections for HE
staining. The sections were subjected to xylene for 5 min,
100% ethanol for 10 min, 95% ethanol for 5 min and 75%
ethanol for 5 min. After washing, the sections were mixed
with hematoxylin and eosin for staining. The images were
viewed with the Leica inverted optical microscope (DMi1,
Leica, Mannheim, BW, Germany).

2.7 Detection of iron content, MDA, GSH and
SOD
The obtained hippocampal tissueswere homogenized, and then
evaluated for hippocampal iron content through the iron assay
kit (ab83366, Abcam, Shanghai, China).
The levels of malondialdehyde (MDA, ab118970, Abcam,

Shanghai, China), glutathione (GSH, ab65322, Abcam, Shang-
hai, China) and superoxide dismutase (SOD, ab65354, Abcam,
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Shanghai, China) in brain tissues were measured through the
commercial kits.

2.8 Western blot
Total proteins from hippocampal tissues were isolated through
the radio immunoprecipitation assay (RIPA) lysis buffer, then
separated on 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE), next moving to polyvinylidene
fluoride (PVDF) membranes (Millipore, Billerica, MA, USA).
Post sealing with non-fat milk, the append of primary antibod-
ies were made in the membranes for 12 h, next for secondary
antibody (1:2000, ab288151, Abcam, Shanghai, China) for
another 2 h. Finally, the protein blots were assessed through
the chemiluminescence detection kit (20148, Thermo Fisher
Scientific, Waltham, MA, USA).
The primary antibodies: Nrf2 (1/1000, ab62352, Abcam,

Shanghai, China), GPX4 (1/1000, ab125066, Abcam, Shang-
hai, China) and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH, 1/500, ab8245, Abcam, Shanghai, China).

2.9 Statistical analysis
The data were presented as mean ± standard deviations (SD).
The data analysis was conducted through SPSS 20.0 (IBM

Corp., Armonk, NY, USA). Comparisons in multiple groups
were performed by one-way Analysis of Variance (ANOVA)
followed by the Turkey test. p < 0.05 was deemed as statisti-
cally significant.

3. Results

3.1 AGNH improved neurobehavioral
function in juvenile SAE mice

The SAE mouse model was established with 5 mg/kg LPS
by intraperitoneal injection. After 24 h, the mice’s behaviors
were assessed through Berderson’s neurological examination
scoring system. Following the administration of LPS, there
was a notable elevation in the Berderson nerve function score,
rising from 0 to 2.3 (p < 0.001). However, this elevation was
counteracted by subsequent treatments with AGNH, resulting
in a reduction from 2.3 to 1 (p < 0.001), as well as with Defe-
toxamine (DFO), a ferroptosis inhibitor, leading to a decrease
from 2.3 to 0.8 (p < 0.001) (Fig. 1), suggesting that AGNH
improved neurobehavioral function in juvenile SAE mice.

FIGURE 1. AGNH improved neurobehavioral function in juvenile SAE mice. Mice were separated into the sham, LPS,
LPS + 100 mg/kg AGNH and LPS + 100 mg/kg DFO groups. Berderson’s neurological examination scoring system was used for
scoring. N = 6 mice in each group. ***p< 0.001. LPS: lipopolysaccharide; AGNH: Angong Niuhuang Pill; DFO: Defetoxamine.
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3.2 AGNH ameliorated inflammation and
coagulation function in juvenile SAE mice
Next, the regulatory impacts of AGNH on inflammatory cy-
tokines were determined. Results from ELISA uncovered that
the pro-inflammatory factors TNF-α and IL-6 levels were both
enhanced after LPS treatment, but these effects were attenu-
ated after AGNH or DFO treatment (Fig. 2A). The prothrom-
bin time (PT), activated partial thromboplastin time (APTT),
thrombin time (TT) were increased, and fibrinogen (FIB) level
were examined for evaluating coagulation function. The find-
ings indicated that levels of PT, APTT and TT showed an
increment, while FIB levels exhibited a decrease following
LPS administration. However, these alterations were reversed
upon treatment with either AGNH or DFO as illustrated in
Fig. 2B. These results suggest that AGNH helped alleviate
inflammation and improve coagulation function in juvenile
SAE mice.

3.3 AGNH alleviated neuronal injury in
juvenile SAE mice
Through HE staining, the number and morphology of neurons
(Hippocampus and Cortex) were evaluated. The number of
neurons (Hippocampus and Cortex) was reduced after LPS
treatment, but this change was offset after AGNH or DFO
treatment (Fig. 3, p < 0.001), indicating AGNH alleviated
neuronal injury in juvenile SAE mice.

3.4 AGNH suppressed ferroptosis and
oxidative stress in juvenile SAE mice
The regulatory functions of AGNH on ferroptosis and oxida-
tive stress were examined. The iron content was elevated
after LPS treatment, but this change was counteracted after
AGNH or DFO treatment (Fig. 4A). Moreover, following LPS
treatment, there was an elevation in MDA levels alongside a
reduction in GSH and SOD levels, with these impacts being
reversed by AGNH or DFO treatment (Fig. 4B). Collectively,
AGNH effectively inhibited ferroptosis and mitigated oxida-
tive stress in young SAE mice.

3.5 AGNH promoted Nrf2/GPX4 signaling
pathway
The Nrf2/GPX4 pathway is involved in various inflammatory
diseases, and then the regulatory effects of AGNH on the
Nrf2/GPX4 signaling in SAE progression were further investi-
gated. Following LPS treatment, the protein levels of Nrf2 and
GPX4 exhibited a decrease as observed through western blot
analysis. However, the administration of AGNH or DFO led
to a restoration of these alterations (Fig. 5). In short, AGNH
promoted Nrf2/GPX4 signaling pathway.

4. Discussion

The traditional Chinese medicines have been reported to own
important regulatory functions in the treatment of SAE [17–
19]. AGNH has been discovered to participate into the reg-
ulation of some diseases [9–14]. However, the regulatory
effects of AGNH and related mechanism in the progression of

SAE keep indistinct. The study demonstrated that the elevated
Berderson motor function score induced by LPS treatment was
mitigated following AGNH or DFO treatment, suggesting that
AGNH enhanced neurological function in young SAE mice.
Moreover, AGNH improved the inflammatory response in
juvenile SAE mice by decreasing levels of TNF-α and IL-6,
while also enhancing coagulation function through increased
PT, APTT and TT and reduced FIB level. Additionally,
AGNH boosted neuronal activity and mitigated neuronal dam-
age in juvenile SAE mice.
Ferroptosis is one iron-dependent programmed cell death

that differs from cell apoptosis, necrosis and autophagy [20–
22]. Currently, there is a wealth of evidence suggesting that
ferroptosis plays a crucial role in the progression of SAE.
Therefore, targeting ferroptosis inhibition may represent a
novel therapeutic avenue. One illustration of this concept is the
influence of exosome-mediated lncRNA nuclear paraspeckle
assembly transcript 1 (NEAT1) on the miR-9-5p/transferrin
receptor (TFRC) and glutamate oxaloacetate transaminase 1
(GOT1) axis, which enhances ferroptosis and consequently
exacerbates the advancement of SAE [23]. Acetaminophen
regulates the GPX4 pathway to relieve ferroptosis in SAEmice
[24]. Furthermore, autophagy degrades transferrin receptor 1
(TFR1) to inhibit ferroptosis, thereby relieving cognitive dys-
function in SAE mice [25]. In this work, it was confirmed that
AGNH suppressed ferroptosis and oxidative stress in juvenile
SAE mice.
Nuclear factor erythroid 2-related factor 2 (Nrf2) acts as a

transcription factor that combats oxidative stress by activating
a wide range of genes involved in lipid peroxidation and
iron metabolism. Consequently, it plays a crucial role in
inhibiting ferroptosis [26]. The nuclear Nrf2 can combine
with antioxidant response element (ARE) to trigger GPX4
expression, thereby maintaining redox homeostasis and mod-
ulating ferroptosis [27, 28]. This Nrf2/GPX4 signaling path-
way has been proved to participate into the regulation of
ferroptosis in various diseases. For example, protein arginine
methyltransferase 4 (PRMT4) retards the Nrf2/GPX4 path-
way to heighten ferroptosis, thereby accelerating doxorubicin-
triggered cardiomyopathy [29]. Moreover, zinc plays a role
in activating the Nrf2/GPX4 defense pathway to mitigate fer-
roptosis and promote functional recovery in contusion spinal
cord injury [30]. Besides, protein deglycase DJ-1 (Parkinson
disease protein 7) stimulates the Nrf2/GPX4 signal pathway
to attenuate trophoblast ferroptosis in preeclampsia [31]. It is
crucial to note that the activation of the Nrf2/GPX4 pathway
by irisin plays a significant role in mitigating ferroptosis in
SAE [32]. However, the regulatory effects of AGNH on
the Nrf2/GPX4 signaling pathway in SAE progression keep
vague. Lastly, this study showed that AGNH enhanced the
Nrf2/GPX4 signaling pathway by increasing the levels of Nrf2
and GPX4 proteins.

5. Conclusions

In conclusion, this work for the first time manifested that
AGNH can suppress GPX4-mediated ferroptosis in mice with
juvenile SAE through regulating Nrf2/GPX4 signaling path-
way. Nevertheless, there are some limitations in this study,
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FIGURE 2. AGNH ameliorated inflammation and coagulation function in juvenile SAE mice. Mice were separated
into the sham, LPS, LPS + 100 mg/kg AGNH and LPS + 100 mg/kg DFO groups. (A) The levels of TNF-α and IL-6 were
examined through ELISA. (B) The prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT)
and fibrinogen (FIB) level were confirmed through the automatic coagulation analyzer. N = 6 mice in each group. ***p <

0.001. LPS: lipopolysaccharide; AGNH: Angong Niuhuang Pill; DFO: Defetoxamine; TNF-α: tumor necrosis factor-alpha;
IL-6: interleukin-6.
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FIGURE 3. AGNH alleviated neuronal injury in juvenile SAE mice. Mice were separated into the sham, LPS, LPS + 100
mg/kg AGNH and LPS + 100 mg/kg DFO groups. The number and morphology of neurons (Hippocampus and Cortex) were
evaluated through HE staining. Bar = 100 µm. N = 6 mice in each group. ***p < 0.001. LPS: lipopolysaccharide; AGNH:
Angong Niuhuang Pill; DFO: Defetoxamine.

FIGURE 4. AGNH suppressed ferroptosis and oxidative stress in juvenile SAE mice. Mice were separated into the sham,
LPS, LPS + 100 mg/kg AGNH and LPS + 100 mg/kg DFO groups. (A) The iron content was tested through the commercial kit.
(B) The levels of MDA, GSH and SOD were measured through the corresponding commercial kits. N = 6 mice in each group.
***p < 0.001. LPS: lipopolysaccharide; AGNH: Angong Niuhuang Pill; DFO: Defetoxamine; MDA: malondialdehyde; GSH:
glutathione; SOD: superoxide dismutase.
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FIGURE 5. AGNH promoted Nrf2/GPX4 signaling pathway. Mice were separated into the sham, LPS, LPS + 100 mg/kg
AGNH and LPS + 100 mg/kg DFO groups. The protein expressions of Nrf2 and GPX4 were determined through western blot. N
= 6 mice in each group. *p < 0.05, **p < 0.01, ***p < 0.001. LPS: lipopolysaccharide; AGNH: Angong Niuhuang Pill; DFO:
Defetoxamine; Nrf2: nuclear factor erythroid 2-related factor 2; GPX4: glutathione peroxidase 4; GAPDH: glyceraldehyde-3-
phosphate dehydrogenase.

such as the lack of human samples, cell models and exploration
of other cellular processes. These limitations reduce the gener-
alizability and reliability of this study findings, and hint that the
truly employment of AGNH in SAE clinical treatment needs
further investigations on cell and human experiments. Future
research will encompass additional experiments to investigate
further the various roles of AGNH in the progression of SAE.
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