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Abstract
Background: Epigenetic modifications, such as chromatin remodeling, are critical in
regulating sepsis immunity. Identifying differentially expressed chromatin remodeling-
related genes (DE-CRRGs) may reveal potential therapeutic targets for sepsis. Methods:
Using the GSE65682 dataset, we identified DE-CRRGs between sepsis and normal
groups. Least absolute shrinkage and selection operator (LASSO) regression, support
vector machine (SVM), and random forest algorithms were applied to screen hub genes.
Immune cell infiltration was analyzed using cell type identification by estimating relative
subsets of RNA transcripts (CIBERSORT), and ceRNA regulatory and co-expression
networks were constructed. Potential drugs were predicted using the Drug Gene
Interaction Database. Results: We identified 17 DE-CRRGs and six hub genes: spondin
2 (SPON2), transglutaminase 2 (TGM2), matrix metalloproteinase 9 (MMP9), DNA
Methyltransferase 1 (DNMT1), lymphocyte antigen 96 (LY96), and forkhead box protein
1 (FOXO1). These genes were significantly correlated with immune cell infiltration,
particularly activated natural killer (NK) cells, cluster of differentiation (CD)8 T cells,
and plasma cells. The hub genes were involved in interleukin-18 signaling and cell
development. Additionally, 62 potential drugs for sepsis treatment were predicted.
Conclusions: These findings provide insights into the epigenetic regulation of sepsis
and suggest potential therapeutic targets and drugs for intervention.
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1. Introduction

Among intensive care unit patients, characterized by immune
system imbalance due to pathogen invasion, ultimately result-
ing in severe organ dysfunction [1, 2]. The current diagnos-
tic methods analyzing blood, urine, wound secretions, and
mucus—frequently cause delays in diagnosis and intervention
[3, 4]. Additionally, the mortality rate among critically ill sep-
sis patients remains high, and the key factors and mechanisms
underlying their diagnosis are still not well understood.
Epigenetic modifications, including histone modifications,

DNA methylation, and chromatin remodeling, are crucial for
determining cell lineage during development. Alterations in
these processes often promote embryonic tumorigenesis.
Chromatin remodeling, the final step of epigenetic
regulation, achieves a specific chromatin condensation
state, facilitating the activity of chromatin remodeling agents
at specific genomic sites [5, 6]. These modifications play an
immunosuppressive role during the late stages of sepsis [7, 8].

Sirtuin 6 (SIRT6), which regulates chromatin remodeling,
genome stability, and transcription, has been shown to
influence mitochondrial dynamics and biogenesis and induce
G2/M cell cycle arrest, both related to the pathophysiology
of sepsis [9]. Overexpression of the SWItch3-related gene,
a chromatin remodeling factor, promotes M2 macrophage
differentiation and suppresses interferon-γ production by
natural killer (NK) cells, positively impacting sepsis prognosis
[10]. These studies indicate that chromatin remodeling-related
genes (CRRGs) play significant roles in sepsis and may serve
as potential therapeutic targets for this disease.

This study used bioinformatics to identify prognostic
biomarkers related to chromatin remodeling in sepsis
and further elucidated their roles through functional and
mechanistic analyses. These findings provide promising
insights for enhancing the diagnosis and treatment of sepsis
patients.

https://www.signavitae.com
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2. Materials and methods

2.1 Microarray data collection
The training set GSE65682 and the validation set GSE134347
were downloaded from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/). GSE65682
contains data on 802 samples, with 42 normal and 760 patient
samples. GSE134347 includes data on 83 normal and 155
patient samples. Additionally, 66 chromatin remodeling-
related genes (CRRGs) were obtained from the GeneCards
database (http://www.genecards.org/).

2.2 Functional analysis of target genes
Differentially expressed genes (DEGs) between the disease
and normal groups in the GSE65682 dataset were evaluated
using the “limma” package (screening criteria: |log2(fold
change)| > 1, adj.p.value < 0.05). Volcano and heat maps
were generated using the “ggplot2” and “pheatmap” packages,
respectively, to illustrate the differential gene expression [11].
Differentially expressed CRRGs (DE-CRRGs) were identified
by intersecting the DEGs with the 66 CRRGs (score >10).
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were conducted on
DE-CRRGs using the “clusterProfiler” package [12].

2.3 Screening of biomarkers
Three different algorithms were used to identify biomarkers:
least absolute shrinkage and selection operator (LASSO) re-
gression analysis was performed using the “glmnet” package
in R, with the family set to “binomial”; the support vector
machine (SVM) classifier in the “e1071” package was used
to narrow the gene range through 10-fold cross-validation;
and random forest analysis was conducted using the “random-
Forest” package. Biomarkers were identified by intersecting
the key genes obtained from these three algorithms. The
expression of these biomarkers was verified using the training
set, and receiver operating characteristic (ROC) curves were
plotted to evaluate their performance.

2.4 Gene set enrichment analysis (GSEA) of
biomarkers
Based on the median expression value, biomarkers were di-
vided into high-expression and low-expression groups, and
differential expression was analyzed using the R “limma”
package. To identify the common functions and related path-
ways among many genes in DEGs, their log2|(fold change)|
values were sorted from high to low, and gene set enrichment
analysis (GSEA) was performed using the “clusterProfiler”
package. Additionally, correlation analysis of biomarkers was
conducted using the “corrplot” package [13].

2.5 Validation of diagnostic markers
To confirm the diagnostic efficacy of the identified biomark-
ers, the expression values of genes were extracted from the
GSE134347 dataset to which ROC curve analysis was con-
ducted, and the gene distribution results were visualized using
a box plot.

2.6 Immune cell infiltration analysis
The infiltration of 22 types of immune cells in the sepsis
and control groups was analyzed using “CIBERSORT”
(https://cibersort.stanford.edu/) in R (p < 0.05). Differentially
infiltrated immune cells were identified using a box plot.
The correlation between the biomarkers and the 22 types of
immune cells was analyzed and visualized using the “psych”
package.

2.7 Construction of competing endogenous
RNA (ceRNA) networks
MicroRNAs (miRNAs) upstream of the biomarker
genes were predicted using the miRWalk database
(http://mirwalk.umm.uni-heidelberg.de/). These predictions
were then intersected with miRNAs interacting with
the biomarkers, identified using miRDB, miRTarBase
and TargetScan. Similarly, long non-coding RNAs
(lncRNAs) were predicted using the Starbase database
(https://starbase.sysu.edu.cn/index.php), and the ceRNA
network was constructed. To analyze the interaction
between biomarkers and other genes, a biomarker co-
expression network was constructed using GeneMANIA
(http://genemania.org/). Lastly, the functions of these
biomarkers were predicted using Metascape.

2.8 Drug prediction
The biomarkers were input into the Drug Gene Interaction
Database, and a network of model genes and molecules was
constructed using Cytoscape to identify potential drugs or
compounds for treating sepsis.

2.9 Statistical analysis
All statistical analyses were performed in R (https://www.r-
project.org/, version 4.0.2). Data from the different groups
were compared using the Wilcoxon rank-sum test, with p <

0.05 considered statistically significant.

3. Results

3.1 Analysis of DE-CRRGs in sepsis
Using the “limma” package, we analyzed the sepsis and
normal groups in the GSE65682 dataset, based on which 1248
up-regulated and 2601 down-regulated genes were identified.
These genes are shown via volcano plots and heatmaps
(Fig. 1A,B). From these DEGs, we obtained 17 differentially
expressed chromatin remodeling-related genes (DE-CRRGs)
(Fig. 1C). Principal component analysis (PCA) showed a clear
separation between the control and disease samples, with PC1
accounting for 18.34% of the variance and PC2 accounting
for 15.36% (Fig. 1D).

3.2 Enrichment analysis of DE-CRRGs in
sepsis
Enrichment analysis provided insights into the pathways and
potential biological mechanisms of the enriched genes. The 17
DE-CRRGs were significantly enriched in 685 Gene Ontology

https://www.ncbi.nlm.nih.gov/geo/
http://www.genecards.org/
https://cibersort.stanford.edu/
http://mirwalk.umm.uni-heidelberg.de/
https://starbase.sysu.edu.cn/index.php
http://genemania.org/
https://www.r-project.org/
https://www.r-project.org/
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(GO) pathways, including response to lipopolysaccharide,
platelet α-granule, and lipopolysaccharide binding, and
20 Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways, such as cellular senescence, FOXO signaling, and
the transforming growth factor-β (TGFβ) signaling pathway
(Fig. 1E,F).

3.3 Screening of hub genes

Three algorithms were used to further screen biomarkers.
LASSO logistic regression selected strong correlation features
and generated a cross-validation error diagram, identifying
11 characteristic genes: SPON2, ETS transcription factor

FIGURE 1. Screening and enrichment analysis of DE-CRRGs in sepsis. (A) Volcano plot of GSE65682. (B) Heatmap
of GSE65682. (C) Venn diagram of DE-CRRGs. (D) Principal component analysis (PCA). (E) KEGG enrichment map of DE-
CRRGs. (F) GO enrichment map of DE-CRRGs. Abbreviations: DE-CRRGs, differentially expressed chromatin remodeling-
related genes; PCA, principal component analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology;
logFC, log fold-changes; DEG, differential expressed gene; CRRGs, chromatin remodeling-related genes; EGFR, epidermal
growth factor receptor; AGE-RAGE, advanced glycation end products-receptor of advanced glycation end products; TGF,
transforming growth factor; ISWI, imitation switch; BP, biological process; CC, cell composition; MF, molecular function.
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ELK3 (ELK3), TGM2, MMP9, DNMT1, transforming growth
factor alpha (TGFA), LY96, histone deacetylase 9 (HDAC9),
FOXO1 and alpha-synuclein (SNCA) (Fig. 2A). The SVM,
a supervised machine learning technology, used recursion
to sort features, identifying 13 genes with the best effect:
LY96, TGM2, SPON2, MMP9, SNCA, TGFA, secreted protein
acidic and rich in cysteine (SPARC), DNMT1, FOXO1,
bromodomain PHD finger transcription factor (BPTF),
FOXO3, adrenomedullin (ADM) and ELK3 (Fig. 2B).
Random forest analysis provided the error rate curve and
the importance score of the characteristic genes, identifying
nine genes with an importance score greater than 2: DNMT1,
SMAD3, MMP9, LY96, ADM, FOXO1, SPON2, TGM2 and
HDAC9 (Fig. 2C,D). The intersection of the results from
these three algorithms yielded six hub genes: SPON2, TGM2,
MMP9, DNMT1, LY96 and FOXO1 (Fig. 2E).

3.4 Verification of hub gene expression
The expression levels of the characteristic genes were verified
in the training set, showing significant differences between the
normal and sepsis groups (Fig. 3A). To validate the diagnostic
ability of these hub genes, ROC curves were plotted, revealing
an area under the curve (AUC) of approximately 0.8, thereby
indicating that the six hub genes—SPON2, TGM2, MMP9,
DNMT1, LY96 and FOXO1—demonstrate high accuracy and
specificity in diagnosing sepsis (Fig. 3B).

3.5 GSEA of hub genes
The biomarkers were divided into high- and low-expression
groups based on the median expression value, and differential
expression between these groups was analyzed. To facilitate
GSEA, we sorted the log2|(fold change)| values from high
to low, which allowed us to analyze the common functions
and related pathways of many genes in DEGs. The abscissa
represents genes, with each small vertical line indicating
a gene. Overall, the pathways were either up-regulated or
down-regulated. For each gene, we highlighted the top
five up-regulated and downregulated pathways (Fig. 4A–F).
Glycosaminoglycan biosynthesis-Heparan sulfate/Heparin,
asthma, and allograft rejection were the biological pathways
in which most biomarkers were co-enriched. The correlation
map of the six hub genes was charted using the “corrplot”
package in R. FOXO1 showed the highest correlation with
TGM2, while SPON2 was significantly correlated with the
other five genes (Fig. 4G).

3.6 Verification of hub gene expression and
ROC curve
The ability of the six hub genes to distinguish between disease
and normal samples was verified using box plots and ROC
curves based on the GSE134347 dataset. The expression
levels of the six hub genes differed significantly between
the two groups (Fig. 5A). According to the ROC curves,
the AUC values were as follows: LY96 was 0.904 (95%
confidence interval (CI): 0.863–0.941), FOXO1 was 0.925
(95% CI: 0.890–0.956), DNMT1 was 0.965 (95% CI: 0.938–
0.988), TGM2 was 0.804 (95% CI: 0.747–0.858), SPON2

was 0.677 (95% CI: 0.603–0.745), and MMP9 was 0.965
(95% CI: 0.940–0.985). These results indicate that the six
hub genes exhibit high accuracy and specificity in diagnosing
sepsis (Fig. 5B).

3.7 Immune cell infiltration analysis
The development of sepsis is closely related to our immune
response against pathogenic microorganisms. Therefore, we
used CIBERSORT and LM22 gene sets to calculate the pro-
portions of 22 types of immune cells in the normal and disease
groups (Fig. 6A). The proportions of each immune cell in each
sample, along with their statistical values, were obtained using
CIBERSORT, excluding samples with p > 0.05. A violin plot
of the 22 types of immune cells in the normal and disease
groups was generated in R. The infiltration of 16 out of the 22
types of immune cells differed significantly between the two
groups (p< 0.01). These differences indicate that the immune
environments of normal and sepsis patients are distinct.
Additionally, we analyzed and visualized the correlation

between the six hub genes and the proportions of the 22 types
of immune cells (Fig. 6B). The hub genes showed significant
correlations with activated NK cells, CD8 cells, and plasma
cells.

3.8 ceRNA regulatory network of hub genes
The miRNA–lncRNA–mRNA regulatory network was
constructed based on 4 miRNAs, 47 lncRNAs and mRNAs
(Fig. 7A). Among the hub genes, FOXO1may be regulated by
the lncRNA AL0503412 through its effects on hsa-miR-27a-
3p and hsa-miR-27b-3p, forming a complex ceRNA network
rather than involving a single RNA molecule.
The co-expression network of biomarkers was constructed

using GeneMANIA (http://genemania.org/), and the interac-
tions between the biomarkers and other genes were analyzed
(Fig. 7B).Most of the 20 genes shared protein domains with the
biomarkers. Notably, GM2A and LY96, as well as CXCR4 and
SPON2, showed a high correlation, although few gene pairs
exhibited genetic interaction.
Furthermore, the function of these biomarkers was predicted

usingMetascape, and the results showed that theywere primar-
ily involved in interleukin-18 signaling, cellular response to
biological stimuli, and positive regulation of cell development,
among other pathways (Fig. 7C).

3.9 Drug prediction
TheDrugGene Interaction databasewas utilized to identify po-
tential therapeutic drugs or compounds for sepsis based on the
six hub genes. Using “Cytoscape”, we constructed a network
of model genes and molecules. The predicted drug network
comprised 62 drugs, with two drugs targeting two genes each
(Fig. 8). In this network, the green nodes represent hub genes,
and the pink nodes represent drug molecules. Curcumin was
found to target bothMMP9 and DNMT1, while cisplatin could
target TGM2 andDNMT1. However, only eritoran tetrasodium
was found to impact LY96.

http://genemania.org/
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FIGURE 2. Screening of hub genes. (A) LASSO cross-validation error diagram. (B) Accuracy curve of the optimal
characteristic genes. (C,D) Random forest screening of the characteristic genes. (E) Identification of hub genes using three
machine-learning algorithms. LASSO, least absolute shrinkage and selection operator; CV, cross-validation; SVM-RFE, support
vector machine-recursive feature elimination.
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FIGURE 3. Hub gene expression in training set. (A) Expression analysis of the characteristic genes. (B) ROC curve in
the training set. ROC, receiver operating characteristic. AUC, area under the curve; CI, confidence interval; SPON2, spondin
2; MMP9, matrix metalloproteinase 9; TGM2, transglutaminase 2; DNMT1, DNA methyltransferase 1; FOXO1, forkhead box
protein 1; LY96, lymphocyte antigen 96.
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FIGURE 4. GSEA of hub genes. (A) DNMT1, (B) FOXO1, (C) LY96, (D) MMP9, (E) SPON2, (F) TGM2 and (G) the
correlation map of these six hub genes. *p < 0.05; **p < 0.01; ***p < 0.001. GSEA, gene set enrichment analysis; DNMT1,
DNA methyltransferase 1; FOXO1, forkhead box protein 1; LY96, lymphocyte antigen 96; MMP9, matrix metalloproteinase 9;
SPON2, spondin 2; TGM2, transglutaminase 2.
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FIGURE 5. Hub gene expression in verification set. (A) Hub gene expression levels. (B) ROC curves of the six hub genes
in the GSE134347 dataset. ROC, receiver operating characteristic. AUC, area under the curve; CI, confidence interval; SPON2,
spondin 2;MMP9, matrix metalloproteinase 9; TGM2, transglutaminase 2; DNMT1, DNAmethyltransferase 1; FOXO1, forkhead
box protein 1; LY96, lymphocyte antigen 96.
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FIGURE 6. Immune cell infiltration analysis. (A) Differential infiltration of immune cells between the normal and disease
groups. (B) Correlation heatmap between the six hub genes and the immune cells. *p < 0.05; **p < 0.01; ***p < 0.001. NK,
natural killer; CD, cluster of differentiation. SPON2, spondin 2; MMP9, matrix metalloproteinase 9; TGM2, transglutaminase 2;
DNMT1, DNA methyltransferase 1; FOXO1, forkhead box protein 1; LY96, lymphocyte antigen 96.
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FIGURE 7. ceRNA regulatory network of the hub genes. (A) ceRNA network of the hub genes (pink circles represent
lncRNAs, red circles represent miRNAs, and green diamonds represent the hub genes). (B) Hub gene co-expression network. (C)
Enrichment analysis of gene functions in the co-expression network. ceRNA, competing endogenous RNA; lncRNA, long non-
coding RNA; miRNA, micro-RNA; SPON2, spondin 2;MMP9, matrix metalloproteinase 9; TGM2, transglutaminase 2; DNMT1,
DNA methyltransferase 1; FOXO1, forkhead box protein 1; LY96, lymphocyte antigen 96.
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FIGURE 8. The predicted drug network. Green diamonds represent hub genes; pink circles represent interactive drugs.
MMP9, matrixmetalloproteinase 9; TGM2, transglutaminase 2;DNMT1, DNAmethyltransferase 1; FOXO1, forkhead box protein
1; LY96, lymphocyte antigen 96.

4. Discussion

Sepsis, caused by an imbalance in the host’s immune response
to infection, is a life-threatening condition characterized by
organ dysfunction and a high mortality rate [14]. During
chromatin remodeling, the final step of epigenetic regulation,
a specific chromatin condensation state, is achieved, allow-
ing the activity of chromatin remodeling agents at particular
genomic sites [5, 6]. Epigenetic modifications play crucial
roles in regulating sepsis immunity, particularly contributing to
immunosuppression during the late stages of the disease [7, 8].
Thus, understanding the pathogenesis of sepsis is essential for
developing new diagnostic and therapeutic strategies.
In this study, through a series of bioinformatic analyses

on sepsis data from the Gene Expression Omnibus (GEO)
and CRRGs identified from the GeneCards database, we used
LASSO regression, SVM-recursive feature elimination, and
random forest methods to screen six biomarker genes: SPON2,
TGM2, MMP9, DNMT1, LY96 and FOXO1. The infiltra-
tion of 16 types of immune cells differed significantly be-
tween the normal and disease groups. The six hub genes
were significantly correlated with activated NK cells, CD8

T cells, and plasma cells. Additionally, TGM2 and MMP9
were significantly correlated with macrophages. Sepsis is
closely related to immune dysfunction. Spondin 2 (SPON2),
an extracellular matrix glycoprotein, plays an important role
in the synthesis, degradation, and distribution of extracellular
matrix components, which are important in disease occurrence
and tumor progression. SPON2 acts as a congenital host im-
munomodulator, recruiting macrophages and neutrophils dur-
ing inflammation [15]. SPON2 is up-regulated in many tumors
and is associated with poor prognosis in patients with prostate,
hepatocellular, and lung adenocarcinoma [16]. Experiments
have shown that mice deficient in the SPON2 gene could not
resist septic shock caused by lipopolysaccharide, and their
ability to clear bacterial infection was severely damaged [17].
CXCR4, which is highly correlated with SPON2, enhances
the phagocytosis of mononuclear macrophages in sepsis [18].
In many animal models, CXCR4 replicated naive CD4+ and
CD8+ T cells and CD4+ central memory T cells selectively,
thereby alleviating immune cell failure [19]. Human tissue
transglutaminase (TGM2) is a multifunctional enzyme with
transglutaminase crosslinking, G protein signaling, and kinase
activities, playing important roles in many disease states and
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mediating histone transglutaminization [20]. The chromatin
nucleosome structure, which can inhibit TGM2 activity, limits
the space-accessible glutamine of the histone tail [21]. Defects
in TGM2 result in abnormalities in clearing apoptotic cells,
leading to immune dysfunction and inflammation. Sepsis
has been shown to cause immune dysfunction, preventing
the body from mounting a normal immune response [22].
TGM2 inhibits the c-Jun N-terminal kinase/Bcl-2 signaling
pathway by interacting with aspartylglucosaminidase, thus al-
leviating lipopolysaccharide-induced apoptosis [22]. Lympho-
cyte antigen 96 (LY96) modulates host immunity by acting as
an important cofactor in the recognition of microbial structural
components of lipopolysaccharide by immune cells. High
expression of LY96 is related to a persistent pro-inflammatory
immune response [23]. FOXO1 belongs to the large family
of forkhead transcription factors. FOXO transcription factors
bind stably to target sites in the chromatin array of nucleosome
and linker histone, which is indispensable forFOXO chromatin
remodeling. Weigel and Jackle first reported FOXO1 as a piv-
otal transcription factor due to its prominent role in regulating a
wide range of biological processes, including cell proliferation,
survival, DNA repair, cell cycle, apoptosis, metabolism, and
immune regulation [24]. Increasing evidence suggests that
miR-223 may limit inflammation to prevent collateral damage
during infection, and FOXO1 is a validated target for miR-
223 [25]. Ji-Ding Fu et al. [26] found that atractylenolide
III alleviated sepsis-mediated lung injury by inhibitingFOXO1
and recombinant vanin 1.
Macrophages play essential roles in immune responses.

Sepsis can induce macrophage apoptosis and inhibit their
inflammatory responses. Normally, the expression of MMPs
is low in the human body. However, during severe infection
stress, MMPs are up-regulated by various inflammatory
mediators released by activated inflammatory cells, such as
monocytes, neutrophils and macrophages. These mediators
are released into the blood, where they disrupt the basement
membrane of endothelial cells, causing them to detach from
the extracellular matrix, which damages the vascular wall,
increases microvascular permeability, and raises the likelihood
of sepsis [27]. Previous research showed that intracellular
pathogens, viruses, and fungi induce the expression of
host MMPs, suggesting that MMPs may be a potential
therapeutic target in sepsis, which aligns with our results
[28]. The diagnostic value of MMP9 in sepsis has also been
previously reported [29, 30]. DNA methylation is influenced
by DNA methyltransferase activity, gene polymorphism,
histone methylation status, RNA interference, and other
factors. DNMT1 can bind to active proteins and participate
in transcription regulation and chromatin modification [31].
Fubing Ma et al. [32] found that SMAD2 could directly bind
to DNMT1, leading to miR-145 promoter hypermethylation,
miR-145 downregulation, and TGFBR2 upregulation. The
TGFBR2/SMAD2/DNMT1/miR-145 negative regulatory loop
was shown to be responsible for lipopolysaccharide-induced
sepsis [32].
This study had some limitations. Firstly, these results are yet

to be validated in vitro experiments. Secondly, the exact mech-
anisms underlying the immune responses induced by SPON2,
DNMT1 and LY96 need further elucidation. Therefore, these

findings should be verified through both in vitro experiments
and clinical practice.

5. Conclusions

This study identified potential biomarkers for improving the
diagnosis of sepsis and explored the role of immune cell
infiltration in the progression of the disease. We established
that six biomarkers (SPON2, TGM2, MMP9, DNMT1, LY96
and FOXO1) might serve as potential targets for the diagnosis
and treatment of sepsis. Additionally, we constructed a ceRNA
network and identified potentially significant therapeutic drugs
for improving patient outcomes based on these biomarkers.
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