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Abstract
Background: Early detection and timely intervention of patients at risk during the
triage stage can significantly improve patient outcomes. This study aimed to predict
requirements for critical respiratory or cardiovascular intervention and poor clinical
outcome using federated learning (FL). Methods: Patients of two tertiary hospitals
who visited the emergency department (ED) were included. Local models for each
hospital and FL models to predict high flow nasal cannula or endotracheal intubation
(model 1), central venous catheter insertion or vasopressor administration (model 2),
and admission to intensive care unit or cardiac arrest during ED stay (model 3) were
developed and internally validated with data from 2017 to 2020. These models were
then externally validated with data from 2021. Available information such as underlying
disease, recent blood test results, age, sex, and initial vital signs at triage stage were
used as input variables. Performances of models were evaluated using area under the
receiver operating characteristic (AUROC) with 95% confidence interval. Results: A
total of 262,283 and 180,261 ED visits from Samsung Medical Center (hospital A) and
Korea University ANAM Hospital (hospital B) respectively, were included. AUROC
values of three local and three FL models in both hospitals all exceeded 0.85 in internal
validation. For hospital B, local models showed better performance than the FL model,
including model 2 (0.942 (0.938–0.946) vs. 0.890 (0.884–0.896)) and model 3 (0.910
(0.905–0.914) vs. 0.886 (0.881–0.891)). AUROC values of local and FL models also
exceeded 0.85 in external validation. The FL model showed comparable performance
except model 3 of hospital B. Conclusions: Federated learning models demonstrated
comparable performance to local models in predicting critical interventions and poor
clinical outcomes at triage.
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1. Introduction

Rapid screening and timely interventions are important for
managing critical patients in the emergency department (ED).
Early detection of patients at risk during the triage stage can
significantly improve patient outcomes [1–4]. With the advent
of machine learning (ML), prediction models have demon-
strated their ability to assist healthcare workers in triage [5, 6].
These models target various outcomes such as mortality and
admissions to the intensive care unit (ICU), enabling earlier
attention of physicians [7–9].
However, such models could not directly guide treatment

decisions. Critical interventions should be performed properly,
as these interventions can significantly impact patient progno-
sis [10–12]. Nevertheless, ED physicians often face challenges
in making timely decisions due to factors such as crowding,
lack of resources and/or low levels of experience [1, 3, 13].
Although previous studies have reported ML models targeting
critical interventions, those models were derived from single
center data with limited performances [14, 15].
Recent studies have revealed the potential of federated learn-

ing (FL) models for generalizability in settings of multina-
tional heterogenous patient cohorts [16, 17]. FL has been
applied to various cardiovascular conditions, including pul-
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monary thromboembolism (PTE) and atrial fibrillation (AFib).
FL models have demonstrated robust performances in pre-
dicting PTE prognostic risks, highlighting their potential for
seamless integration into clinical workflows. Additionally,
FL methodologies have shown promise in AFib prediction
by analyzing electrocardiogram (ECG) signals and other vital
parameters, while addressing privacy concerns associated with
patient data [18, 19].
To make one prediction model that works well in multiple

hospitals, EDs would originally need to combine their patient
data to create one centralized model. However, the data pri-
vacy policy could pose an issue [20–23]. FL allows distributed
learning methods that keep data in its storage silo without the
need to exchange data between locations for preserving data
privacy [24]. However, studies applying FL in the field of
emergency medicine are limited.
Thus, this study aimed to predict requirements for critical

respiratory or cardiovascular intervention and poor clinical
outcome defined as either direct admission to an intensive care
unit (ICU), cardiac arrest or ED death during the triage stage
[9, 25]. In addition, the feasibility of applying FL to two EDs
with distinct heterogenous patient groups was investigated.

2. Methods

2.1 Study design, settings and population
This was a retrospective bicenter study performed in two EDs
of tertiary university hospitals in Seoul, Korea. One hospital
is the Samsung Medical Center which has one of the biggest
cancer centers in South Korea. It is located in the southern
part of Seoul. It is designated as a local emergency medical
center. The hospital has 2000 beds. Its annual visit volume
of ED is about 70,000. The other hospital is Korea University
ANAM Hospital. It is located in the northern part of Seoul.
It is designated as a regional emergency medical center and a
representative ED of that district. The hospital has a total of
1000 beds. Its annual visit volume of ED is about 40,000.
Patients who visited ED from January 2017 to December

2021 were included. Patients who were younger than 20
years old, who visited with trauma, who visited for purposes
other than medical treatment, who left without being seen, and
who were already in cardiac arrest or dead on arrival at visit
were excluded. This study was approved by the Institutional
Review Boards of Korea University ANAM Hospital (No.
2021AN0545) and Samsung Medical Center (No. 2022-08-
175), both of which waived informed consent based on insti-
tutional guidelines. In accordance with deliberation results of
data review boards, neither of the two hospitals exported the
original data.

2.2 Input variables
Data were extracted from clinical data warehouse of each
hospital. Clinical data of ED visits, along with data from
the preceding year, were collected and organized into two
categories.
Underlying medical conditions were defined as having a

medical history within the past year involving cardiovascular
disease, pulmonary disease, neurology disease, or cancers

based on Korean classification of diseases 8th revision (KCD-
8). KCD-8 is based on the international classification of dis-
ease 10th revision. Most recent blood laboratory test results of
aspartate aminotransferase, total bilirubin, C-reactive protein,
creatinine, total white blood cell count, hemoglobin, platelet
count, lactic acid, n-terminal pro b-type natriuretic peptide,
sodium and potassium values were collected.
Age, sex, chief complaint, mode of ED visit, Korean triage

and acuity scale (KTAS) level, initial vital signs of systolic
blood pressure (SBP), diastolic blood pressure (DBP), pulse
rate (PR), respiratory rate (RR), saturation of partial pressure
oxygen (SpO2), oxygen supply status while ED visit and alert-
ness of patients on (Alert, Verbal, Pain, Unresponsive) AVPU
scale were collected at triage stage.

2.3 Study outcomes
We derived three models with different outcomes. The study
outcome of model 1 was events of critical respiratory support
defined as applying high flow nasal cannula (HFNC) or endo-
tracheal intubation during ED stay. Model 2 predicted events
of critical circulatory support. Circulatory support was defined
as needs for central venous catheter insertion for any reasons
or needs for a vasopressor including dopamine, epinephrine,
phenylephrine and vasopressin [26]. Model 3 targeted poor
clinical outcomes defined as admission to ICU, cardiac arrest
or death during ED stay.

2.4 Local model development and federated
learning
Data from both hospitals were divided into two sets. The data
set from 2017 to 2020was used to develop local models and FL
models (derivation set). The data set from 2021 was used only
for external validation (external validation set) of local and FL
models as described above. Data from 2017 to 2020 were split
into training set, validation set and test set at a ratio of 7:1:2.
Local models were developed using a shallow neural net-

work with the Tensorflow 2.13.0 package. The batch sized
for a neural network was 128. There was only one hidden
layer consisting of 256 rectified linear units. RMSprop was
the optimizer for local models. The learning rate was 0.001.
The loss function was binary crossentropy. FL models were
developed using Federated Averaging (FedAvg), a widely used
aggregation algorithm in FL.

f (w) =

K∑
k=1

nk

n
Fk(w) where Fk(w) =

1

nk

∑
i∈pk

fi(w)

This equation explains the aggregation algorithm of Fe-
dAvg. It is based on a FedAvg paper [27]. K is defined as
the total number of hospitals. The data index set for hospital k
is Pk, with nk = lPkl representing the number of data samples
held by hospital k. In our case, K was 2 because the study was
conducted in two institutions. The nk represents the number
of learning data. It was 148,664 and 108,949, respectively.
This formula applies weights proportional to the amount of
data each hospital possesses. However, when hospitals are
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uniformly random, EPk
[Fk (w)] = f(w).

Communication rounds of FL were set to 10 rounds, with
10 local epochs per communication round. The FL model
was developed with 10 communication rounds and a total of
100 local rounds. A user-interface based website accessible
only to learning participants was built with NodeJS 16.17.0.
FedAvg operation and communication were implemented in
Flask 2.0.3. Learning participants accessed the aggregation
server implemented in the form of a website, sent parameters,
and received a FL model.

2.5 Performance evaluation and statistical
analysis

The performance of the local model was evaluated only with
data from the institution that derived the local model. The
performance of the FL model was evaluated with data from
both hospitals. The model performance was evaluated with
area under the receiver operating characteristic (AUROC). The
95% confidence interval was obtained by bootstrapping 1000
times. In addition, accuracy, precision, recall, F1-score and
area under precision recall curve (AUPRC) were analyzed.

All continuous and categorical variables were reported as
medians (interquartile range (IQR)) after normality test and
numbers (percentages), respectively. To test differences in
characteristics between two hospitals, square test or Fisher’s
exact test, whichever appropriate, was used for comparing cat-
egorical variables. A two-sided p-value< 0.05 was considered
statistically significant. All statistical analyses were performed
using Python Software (version 3.9.7, Python Software Foun-
dation, OR, USA, https://www.python.org/).

3. Results

3.1 Patients' demographics in the
derivation set
A total of 212,378 and 155,642 who visited ED of the two
hospitals from 2017 to 2020 were included in the derivation set
(Fig. 1). Distribution of initial mental status, mode of arrival,
underlying medical conditions showed significant differences
between the two hospitals (p < 0.01). Among four underlying
disease categories, cancer accounted for the most in hospital
A (34.4%) versus hospital B (8.3%). In addition, the propor-
tion of patients who had underlying disease was significantly
different between the two hospitals (60.7% in hospital A vs.
36.0% in hospital B, Table 1).
Incidences of study outcomes also differed between the two

hospitals. The incidence of those needing critical respiratory
support was 1.8% in hospital A and 5.3% in hospital B. Inci-
dence of those needing critical circulatory support was 3.5% in
hospital A and 8.3% in hospital B. Incidence of those with poor
clinical outcomeswas 2.8% in hospital A and 13.3% in hospital
B. Differences of all outcomes between the two hospitals were
significant (p-values < 0.01 for all outcomes).

3.2 Performances of local models and FL
models with the derivation test set
Three local prediction models and three FL prediction models
were derived and their performances were evaluated with the
internal test set. AUROC values of local and FL models all
exceeded 0.85 (Table 2). The performances of the following
local models and FL models were not significantly different:
threemodels of hospital A andmodel 1 of hospital B. However,
FL model showed significantly lower performances than local
models (model 2 and model 3 of hospital B, which were
derived from outcomes with highest incidences). Model 2,
a local model, had an AUROC of 0.942 (95% confidence
interval (CI): 0.938–0.946), higher than the AUROC of 0.890

FIGURE 1. Flow diagram for patient selection. (A) Hospital A: Samsung Medical Center; (B) Hospital B: Korea University
ANAM Hospital. ED: Emergency department.

https://www.python.org/
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TABLE 1. Baseline characteristics of patients in derivation set.

Characteristic Samsung Medical Center
(n = 212,378)

Korea University ANAM Hospital
(n = 155,642)

Age, median (IQR) 59.0 (26.0) 60.0 (33.0)

Female, n (%) 107,615 (50.6) 79,889 (51.3)

Korean triage and acuity scale, n (%)*

1 1149 (0.5) 6554 (4.2)

2 13,488 (6.3) 29,350 (18.9)

3 99,698 (46.9) 96,106 (61.7)

4 83,113 (39.1) 17,884 (11.5)

5 14,930 (7.0) 5748 (3.7)

Initial vital signs at visit, median (IQR)

Systolic blood pressure (mmHg) 127 (33) 130 (34)

Diastolic blood pressure (mmHg) 77 (20) 80 (20)

Pulse rate (/min) 88 (26) 90 (26)

Respiratory rate (/min) 18 (4) 20 (0)

Body Temperature (◦C) 36.9 (0.8) 36.7 (0.9)

Saturation of partial pressure oxygen (%) 98 (2) 98 (3)

Initial mental status, n (%)*

Awake 207,327 (97.6) 134,734 (86.5)

Verbal 2429 (1.1) 14,217 (9.1)

Pain 1902 (0.8) 5932 (3.8)

Unresponsive 720 (0.3) 759 (0.4)

Mode of ED visit, n (%)*

Emergency medical service 25,946 (12.2) 49,394 (31.7)

Hospital or private ambulance 16,238 (7.6) 13,499 (8.6)

Walk-in 170,194 (80.1) 92,749 (59.5)

Underlying medical conditions, n (%)*

Cardiovascular disease 44,386 (20.8) 27,973 (17.9)

Cancer 73,068 (34.4) 13,057 (8.3)

Neurology disease 726 (0.3) 9756 (6.2)

Pulmonary disease 10,695 (5.0) 5173 (3.3)

Outcome incidence, n (%)

Critical respiratory support* 3960 (1.8) 8352 (5.3)

Critical circulatory support* 7515 (3.5) 12,967 (8.3)

Poor clinical outcome* 5974 (2.8) 20,831 (13.3)

*Distributions of categorical variables are significantly different (p < 0.01) between the two hospitals.
Critical respiratory support includes high flow nasal cannula and endotracheal intubation.
Critical circulatory support includes central venous catheter insertion and vasopressor administration.
Poor clinical outcome includes admission to intensive care unit and cardiac arrest or death during emergency department stay.
IQR: Interquartile range; ED: emergency department.
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TABLE 2. Performances of local models and federated learning models in derivation test set and external validation set
using area under receiver operating characteristic.
Derivation test set (2017∼2020) External validation set (2021)

Samsung Medical
Center

(n = 42,689)

Korea University
ANAM Hospital
(n = 31,285)

Samsung Medical
Center

(n = 49,905)

Korea University
ANAM Hospital
(n = 24,619)

Model 1
Incidence 1.8% 5.3% 2.2% 6.5%
Local model 0.906 (0.895, 0.917) 0.922 (0.916, 0.927) 0.903 (0.894, 0.913) 0.930 (0.923, 0.936)
FL model 0.911 (0.901, 0.922) 0.920 (0.914, 0.925) 0.915 (0.907, 0.923) 0.941 (0.937, 0.946)

Model 2
Incidence 3.5% 8.3% 4.1% 11.2%
Local model 0.881 (0.873, 0.889) 0.942 (0.938, 0.946) 0.881 (0.873, 0.888) 0.921 (0.917, 0.926)
FL model 0.870 (0.860, 0.880) 0.890 (0.884, 0.896) 0.870 (0.862, 0.879) 0.923 (0.918, 0.928)

Model 3
Incidence 2.8% 13.3% 2.5% 10.5%
Local model 0.868 (0.857, 0.878) 0.910 (0.905, 0.914) 0.855 (0.844, 0.866) 0.910 (0.905, 0.915)
FL model 0.870 (0.860, 0.879) 0.886 (0.881, 0.891) 0.864 (0.853, 0.874) 0.896 (0.891, 0.902)

Model 1 is a prediction model for critical respiratory support which includes high flow nasal cannula and endotracheal intubation.
Model 2 is a prediction model for critical circulatory support which includes central venous catheter insertion and vasopressor
administration.
Model 3 is a prediction model for poor clinical outcome which includes admission to intensive care unit and cardiac arrest or
death during emergency department stay.
FL: federated learning.

(95% CI: 0.884–0.896) for the FL model. Similarly, model 3,
a local model, showed a higher AUROC of 0.910 (95% CI:
0.905–0.914) than the FL model, which had an AUROC of
0.886 (95% CI: 0.881–0.891).

3.3 External validation with a time-split
validation set
Time-split external validation sets were established with
49,905 and 24,619 patients at hospital A and hospital
B, respectively. Incidences of study outcomes between
derivation and external validation sets were significantly
different in all six models (all p < 0.01, Fig. 2).
Performances of three local prediction models and three

FL prediction models were evaluated with external validation
sets. AUROC values of all local and FL models also exceeded
0.85. FL models showed performances comparable to those of
local models except model 3 of hospital B (Table 2). Detailed
performances of FLmodels with cutoff using Youden index are
shown in Table 3. The recall was above 0.79 for all models.
AUPRC values of models ranged from 0.26 to 0.36 in hospital
A and 0.50 to 0.62 in hospital B.

4. Discussion

This study investigated the feasibility of using FL for predict-
ing critical interventions in EDs based on real-world data from
two hospitals. Performances of FL models were comparable
to those of local models across three predictive models. Con-
sidering significant data heterogeneity in EDs, which varies by

region and time, results of this study highlight the applicability
of FL in the field of emergency medicine.
Developing and utilizing models specified to each ED may

yield the best performance. One study has compared cen-
tralized, FL, and local ED models for predicting admission
and demonstrated that the local model has the highest perfor-
mance, while the FL model has the lowest performance [28].
However, many EDs lack resources to independently develop
their own local models using their own data. Furthermore, a
multicenter approach is recommended to improve model gen-
eralizability and performance [29, 30]. Nonetheless, stringent
data regulations make aggregating data across centers difficult.
FL aligns with emerging hospital data privacy trends and
regulations by enabling training without data sharing between
sites.
We selected our targeted outcomes based on common prac-

tices during ED stays and categorized them by affected organs.
Moreover, we focused on interventions that, depending on
their application, could significantly influence clinical out-
comes regardless of disease type. These interventions are
heavily reliant on clinical judgment [30–33]. Predictive mod-
els, particularly outcomes of Models 1 and 2, can address situ-
ations requiring substantial clinical expertise for accurate and
timely decision-making [32, 34, 35]. Additionally, proficiency
levels can vary depending on the frequency of case encounters
and characteristics of the ED where they work. In the triage
stage, if the need for respiratory or circulatory support is
evident, or if a physician determines that such intervention
is necessary, prompt action should follow. However, the
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FIGURE 2. Confusion matrix of a federated learning model using an external validation set. Hospital A: Samsung
Medical Center; Hospital B: Korea University ANAM Hospital.

TABLE 3. Detailed performance of federated learning model in an external validation set.
Accuracy Precision Recall F1-score AUPRC AUROC

Model 1
Samsung Medical Center 0.84 0.10 0.83 0.18 0.32 0.92
Korea University ANAM Hospital 0.81 0.24 0.93 0.39 0.54 0.94

Model 2
Samsung Medical Center 0.80 0.15 0.79 0.25 0.36 0.87
Korea University ANAM Hospital 0.81 0.36 0.91 0.51 0.62 0.92

Model 3
Samsung Medical Center 0.77 0.08 0.79 0.15 0.26 0.86
Korea University ANAM Hospital 0.78 0.31 0.87 0.46 0.50 0.89

AUROC: Area under the receiver operating characteristic; AUPRC: Area under precision recall curve.
Model 1 is a prediction model for critical respiratory support which includes high flow nasal cannula and endotracheal intubation.
Model 2 is a prediction model for critical circulatory support which includes central venous catheter insertion and vasopressor
administration.
Model 3 is a prediction model for poor clinical outcome which includes admission to intensive care unit and cardiac arrest or
death during emergency department stay.
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purpose of this study was to assist physicians who might lack
sufficient clinical experience or face challenges in clinical
decision-making by providing predictive values to support
their decisions.
Therefore, these models are thought to be beneficial for

supporting less experienced physicians’ decision-making. For
skilled physicians, these models have the potential to reduce
the time and cognitive load involved in making decisions. This
efficiency allows for quicker preparation and intervention,
thereby enabling attention to be directed towards other patients
[36, 37]. Moreover, some EDs have limited resources to
provide critical interventions to critically ill patients. In such
cases, our models can also aid decision-making for triage and
transfer of patients during ED crowding situations.
An additional strength of our study was the use of longitu-

dinal data including laboratory test results from 1 year prior
and underlying disease history, which were considered during
triage but not recorded in triage data. Incorporating past medi-
cal history enablesmore in-depthmodels beyondwhat could be
achieved with triage data alone. Patients with chronic diseases
often visit EDs of their follow-up care hospitals [38]. Our
models incorporated past medical history data. They might be
generalized to other hospitals with substantial populations of
follow-up patients from their outpatient clinics.
This study has some limitations. We used time-split data

from the same hospitals for conducting external validation.
Although incidence and characteristics differed over time, val-
idating our models using data from unseen EDs would provide
stronger evidence in future studies. Moreover, large-scale
multicenter validation is needed to demonstrate real-world
utility of our models. We selected shallow neural net models
with only one hidden layer. Exploring various backbone
model architecture would be valuable. Our model revealed
that the FL approach underperformed other models when it
was applied to data from specific institutions. This limitation
could potentially be addressed by incorporating transfer learn-
ing into the FL model. Furthermore, several FL algorithms
have been proposed to address challenges of non-independent
and identically distributed (non-IID) data in FL. While we
applied the commonly used FedAvg algorithm, future studies
could explore alternative algorithms such as federated proxi-
mal (FedProx), stochastic controlled averaging for federated
learning (SCAFFOLD) and federated normalized averaging
(FedNova), which have been specifically designed to address
non-IID issues [39].

5. Conclusions

FL models for predicting critical interventions and poor clin-
ical outcomes at triage stage presented performances compa-
rable to those of local models. Further studies with multiple
sites and advanced algorithms will be needed to improve the
reliability and generalizability of our models.
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