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Abstract
Background: This study aimed to analyze the independent risk factors for sepsis
patients complicated by disseminated intravascular coagulation (DIC) using the Medical
Information Mart for Intensive Care IV (MIMIC-IV) database and to construct and
validate a dynamic predictive model, thereby providing a basis for early clinical
intervention. Methods: A total of 3586 Intensive Care Unit (ICU) patients meeting the
Sepsis-3 criteria from the MIMIC-IV database between 2008 and 2019 were included.
Patients were categorized into a DIC group (1311 cases) and a non-DIC group (2275
cases) based on the International Society on Thrombosis and Haemostasis (ISTH) overt
DIC scoring criteria. Predictive variables were screened using Least Absolute Shrinkage
and Selection Operator (LASSO) regression, and amultivariate logistic regressionmodel
was constructed. The model’s performance was evaluated using the receiver operating
characteristic (ROC) curve. Results: The independent risk factors for sepsis complicated
by DIC included the Sequential Organ Failure Assessment (SOFA) score, international
normalized ratio (INR), total bilirubin, red blood cell distribution width (RDW), red
blood cell count (RBC), absolute neutrophil count (Neutrophils Abs), age, chronic
kidney disease (renal disease), mean corpuscular hemoglobin concentration (MCHC),
and absolute monocyte count (Monocytes Abs). The predictive model achieved an
area under the curve (AUC) of 0.781, with a sensitivity of 68.9% and a specificity of
75.3%, outperforming single indicators (e.g., INR with an AUC of 0.761). Conclusions:
The predictive model constructed in this study integrates multidimensional indicators
encompassing inflammation, coagulation, and red blood cell parameters, demonstrating
good clinical utility. It can assist in the early identification of high-risk critically ill
patients and optimize personalized intervention strategies. This model is specifically
applicable to critically ill patients admitted to the ICU.
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1. Introduction

Sepsis is a systemic inflammatory response syndrome trig-
gered by infection, with its global incidence steadily increasing
and becoming one of the leading causes of mortality among
patients in intensive care units (ICUs) [1, 2]. Studies indicate
that there are over 49 million sepsis cases worldwide annually,
with approximately 20% of these cases progressing to septic
shock and mortality rates ranging from 30% to 50% [3]. The
pathophysiological processes of sepsis are complex and often
accompanied by multiple complications, among which dis-
seminated intravascular coagulation (DIC) stands as a critical
secondary condition significantly elevating the risk of multi-
organ failure and death [4, 5]. Research has shown that

approximately 30% to 80% of sepsis patients develop DIC,
and the mortality rate among these patients is nearly doubled
compared to those without DIC [6, 7]. While guidelines
for DIC diagnosis, such as those proposed by the Interna-
tional Society on Thrombosis and Haemostasis (ISTH) and the
Japanese Ministry of Health andWelfare (JMHW), exist, there
is no unified consensus on diagnostic criteria specifically for
sepsis-induced DIC due to its distinct characteristics [8, 9].
The sepsis-induced coagulopathy (SIC) scoring system, as
a novel diagnostic tool, has demonstrated certain diagnostic
value but exhibits considerable heterogeneity across differ-
ent populations [10]. Therefore, early identification of risk
factors associated with the progression of sepsis to DIC and
the establishment of a reliable predictive model hold signifi-
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cant importance for optimizing clinical decision-making and
improving patient outcomes. The Medical Information Mart
for Intensive Care IV (MIMIC-IV), recognized as one of the
largest publicly accessible critical care databases globally,
integrates detailed clinical data from tens of thousands of ICU
patients across multiple medical centers. This comprehensive
dataset encompasses demographic characteristics, vital signs,
laboratory test results, medication records, and other multi-
dimensional information, providing high-quality data support
for exploring risk factors related to sepsis-associated complica-
tions and constructing predictive models [11]. Leveraging ma-
chine learning and statistical modeling approaches, this study
aims to systematically analyze the independent risk factors
for sepsis patients complicated by DIC using the MIMIC-IV
database and to develop a dynamic risk assessment predictive
model. The objective is to furnish evidence-based guidance for
early clinical intervention, thereby reducing the incidence and
mortality rates of sepsis-related DIC.

2. Materials and methods

2.1 Data source and study population
The data for this study were sourced from the publicly acces-
sible critical care database MIMIC-IV (v2.2), which encom-
passes information on ICU patients admitted to Beth Israel
Deaconess Medical Center in the United States between 2008
and 2019. Data extraction adhered to the MIMIC-IV usage
protocols and was conducted through the PhysioNet platform
(access link: https://physionet.org/content/mimiciv/2.2/). The
study was reviewed and approved by the Ethics Committee of
theMassachusetts Institute of Technology (Exemption Review
Number: 66822508).
Inclusion Criteria: 1⃝ Patients aged 18 years or older; 2⃝

Patients meeting the Sepsis-3 criteria (infection combined with
a Sequential Organ Failure Assessment (SOFA) score ≥2)
[12]; 3⃝ Patients admitted to the ICU for the first time with a
hospital stay duration of ≥24 hours. Exclusion Criteria: 1⃝
Patients with a data missing rate >20%; 2⃝ Patients previ-
ously diagnosed with DIC or hematological disorders (such
as leukemia, coagulation factor deficiencies), advanced liver
cirrhosis, or receiving anticoagulant therapy prior to admis-
sion; 3⃝ Pregnant patients or those in the terminal stages of
malignant tumors; 4⃝ Patients with missing data on platelet
count, prothrombin time (PT), fibrinogen, or D-dimer levels.

2.2 Variable definitions and data extraction
All predictive variables were extracted from the first laboratory
tests and clinical assessments performed within 24 hours after
ICU admission to ensure consistency in data collection timing.

2.2.1 Outcome variable
To judge whether sepsis patients are complicated by DIC
within 7 days after admission, DIC diagnosis was based on the
International Society on Thrombosis and Haemostasis (ISTH)
overt DIC scoring criteria (≥5 points) [13]. The diagnostic
criteria are outlined in Table 1.

2.2.2 Predictive variables

1⃝ Demographic characteristics: gender, age, ethnicity,
weight, smoking status, alcohol consumption, hypertension,
diabetes mellitus, chronic kidney disease, and chronic
obstructive pulmonary disease. 2⃝ Vital signs indicators:
Acute Physiology and Chronic Health Evaluation (APACHE)
III score, SOFA score, Systemic Inflammatory Response
Syndrome (SIRS) score, body temperature, heart rate, and
respiratory rate. 3⃝ Laboratory indicators: C reactive protein,
white blood cell count, lymphocyte count, neutrophil count,
monocyte percentage, neutrophil percentage, monocyte
count, lymphocyte percentage, mean corpuscular hemoglobin
concentration (MCHC), red blood cell distribution width
(RDW), red blood cell count, creatinine, blood urea nitrogen
(BUN), international normalized ratio (INR), alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
total bilirubin, and hemoglobin.

2.3 Statistical analysis

Data processing and analysis were conducted using SPSS
(version 26.0, IBMCorp., Armonk, NY, USA) and R software.
This observational study was conducted in accordance with
the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) guidelines. Missing values for con-
tinuous variables were imputed using the median, while miss-
ing values for categorical variables were filled with the mode.
Baseline characteristics were compared between the DIC and
non-DIC groups using the t-test (for normally distributed data),
Mann-Whitney U test (for non-normally distributed data), or
chi-square test (for categorical variables). Least Absolute
Shrinkage and Selection Operator (LASSO) regression was
employed to extract key predictive features, and a multivariate
logistic regressionmodel was constructed. Model performance
was evaluated using the area under the receiver operating char-
acteristic curve (AUC), sensitivity, specificity, and calibration
curves. A p-value of less than 0.05 was considered statistically
significant.

3. Results

3.1 Comparison of clinical data between the
two groups

After screening, a total of 3586 patients were included in the
study. Among them, 1311 patients with sepsis complicated
by DIC were included in the observation group, while the
remaining 2275 patients were included in the control group.
Patients in the observation group were younger, with a higher
proportion of Caucasians, and a lower proportion of patients
with hypertension, diabetesmellitus, renal disease, and chronic
obstructive pulmonary disease compared to the control group.
Additionally, the APACHE III and SOFA scores were higher
in the observation group, and significant differences in serum
biomarker levels were also observed (p < 0.05). The detailed
comparisons are presented in Table 2.

https://physionet.org/content/mimiciv/2.2/
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TABLE 1. Diagnostic criteria for DIC.
Markers ID-9 code Scoring rules
Platelet count 51265 ≥100 × 109/L → 0 points; <100 × 109/L → 1 point; <50 × 109/L → 2 points
D-dimer 5090810 Normal → 0 points; moderately elevated → 1 point; significantly elevated → 2 points (to be

combined with laboratory reference values)
PT 51237 Prolonged <10 seconds → 0 points; prolonged 10–16 seconds → 1 point; prolonged >6

seconds → 2 points
Fibrinogen 512143 ≥1.0 g/L → 0 points; <1.0 g/L → 1 point
PT: prothrombin time.

TABLE 2. Comparison of clinical data between the two groups.

Mark Observation group
(n = 1311)

Control group
(n = 2275) t/ꭓ2/Z p

Gender (male, %) 758 (57.82) 1352 (59.43) 0.890 0.345
Age (yr, x̄± s) 61.64 ± 16.53 64.23 ± 16.09 4.604 <0.001
Race (n, %)

Asian 90 (6.86) 175 (7.69)

9.946 0.019
White 803 (61.25) 1288 (56.62)
Black 249 (18.99) 444 (19.52)
Unknown 169 (12.89) 368 (16.18)

Weight (kg, x̄± s) 83.60 ± 33.97 84.01 ± 25.57 0.411 0.681
Smoker (n, %) 55 (4.20) 108 (4.75) 0.584 0.445
Alcohol (n, %) 6 (0.46) 17 (0.75) 1.094 0.295
Hypertension (n, %) 383 (29.21) 777 (34.15) 9.273 0.002
Diabetes (n, %) 369 (28.15) 731 (32.13) 6.212 0.013
Renaldisease (n, %) 285 (21.74) 568 (24.97) 4.780 0.029
CPD (n, %) 265 (20.21) 533 (23.43) 4.969 0.026
APS III (M (P25, P75)) 63 (48, 83) 55 (40, 73) 9.326 <0.001
SOFA (M (P25, P75)) 10 (7, 14) 8 (5, 11) 13.780 <0.001
SIRS (n, %)

0–1 47 (3.59) 114 (5.01)

6.529 0.163
2 258 (19.68) 441 (19.38)
3 610 (46.53) 1003 (44.09)
4 396 (30.21) 717 (31.52)

Temperature (℃, x̄± s) 36.75 ± 1.07 36.73 ± 1.04 0.790 0.430
HR (Times/min, x̄± s) 97.78 ± 21.36 95.67 ± 22.80 2.785 0.005
Resp rate (Times/min, x̄± s) 21.84 ± 6.74 21.26 ± 6.66 2.512 0.012
MBP (mmHg, x̄± s) 79.74 ± 19.31 82.98 ± 21.33 4.658 <0.001
WBC (×109/L, M (P25, P75)) 9.80 (5.10, 16.30) 12.70 (8.50, 18.80) 10.581 <0.001
Lymphocytes Abs (×109/L, M (P25, P75)) 0.76 (0.36, 1.34) 1.04 (0.61, 1.74) 10.780 <0.001
Neutrophils Abs (×109/L, M (P25, P75)) 7.79 (3.58, 13.68) 10.77 (6.72, 16.66) 12.100 <0.001
Monocytes (%, M (P25, P75)) 5.30 (2.80, 9.00) 4.90 (3.00, 7.30) 3.722 <0.001
Neutrophils (%, M (P25, P75)) 79.00 (66.10, 86.20) 81.30 (73.80, 87.20) 6.574 <0.001
Monocytes Abs (×109/L, M (P25, P75)) 0.48 (0.18, 0.98) 0.62 (0.34, 1.04) 6.888 <0.001
Lymphocytes (%, M (P25, P75)) 8.30 (4.50, 15.90) 8.50 (4.40, 14.20) 1.065 0.287
MCHC (g/dL, x̄± s) 32.78 ± 1.85 32.43 ± 1.71 5.519 <0.001
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TABLE 2. Continued.

Mark Observation group
(n = 1311)

Control group
(n = 2275) t/ꭓ2/Z p

RDW (%, x̄± s) 17.01 ± 3.28 15.62 ± 2.74 12.894 <0.001
RBC (×1012/L, x̄± s) 3.05 ± 0.82 3.57 ± 0.89 17.476 <0.001
Creatinine (mg/dL, M (P25, P75)) 1.40 (0.90, 2.30) 1.20 (0.80, 2.00) 2.988 0.003
BUN (mg/dL, M (P25, P75)) 28.00 (17.00, 47.00) 24.00 (16.00, 42.00) 4.287 <0.001
INR, M (P25, P75) 1.80 (1.50, 2.40) 1.30 (1.20, 1.60) 26.201 <0.001
ALT (U/L, M (P25, P75)) 39.00 (20.00, 127.00) 30.00 (17.00, 68.00) 7.305 <0.001
AST (U/L, M (P25, P75)) 73.00 (35.00, 226.00) 48.00 (27.00, 110.00) 9.791 <0.001
Bilirubin (mg/dL, M (P25, P75)) 1.70 (0.80, 4.60) 0.70 (0.40, 1.50) 19.711 <0.001
Hemoglobin (mg/dL, M (P25, P75)) 9.10 (7.70, 11.00) 10.50 (8.70, 12.40) 14.394 <0.001
SOFA: Sequential Organ Failure Assessment; MCHC: mean corpuscular hemoglobin concentration; RDW: red blood cell
distribution width; RBC: red blood cell count; BUN: blood urea nitrogen; INR: international normalized ratio; ALT: alanine
aminotransferase; AST: aspartate aminotransferase; Neutrophils Abs: absolute neutrophil count; Monocytes Abs: absolute
monocyte count; Lymphocytes Abs: Absolute Lymphocyte Count; SIRS: Systemic Inflammatory Response Syndrome; HR: Heart
Rate; MBP: Mean Blood Pressure; WBC: White Blood Cell Count; CPD: Chronic Pulmonary Disease; APS: Acute Physiology
Score.

3.2 Feature selection for the predictive
model

LASSO regression was employed to screen the main factors
contributing to the predictive model for the occurrence of
DIC in sepsis patients. As illustrated in Fig. 1, when the
model included 10 variables, it achieved a balance between
simplicity and high accuracy. Through LASSO regression,
the following predictive variables were selected for the model:
“renaldisease” (chronic kidney disease), “SOFA” (Sequen-
tial Organ Failure Assessment score), “neutrophilsAbs” (ab-
solute neutrophil count), “neutrophils” (neutrophil percent-
age), “MCHC” (mean corpuscular hemoglobin concentration),
“RDW” (red blood cell distribution width), “RBC” (red blood
cell count), “INR” (international normalized ratio), “bilirubin”
(total bilirubin), and “age”. Feature importance was further
evaluated using SHapley Additive exPlanations (SHAP) val-
ues, which ranked SOFA score (SHAP mean |value| = 0.28),
INR (0.25), and RDW (0.21) as the top three contributors to
model prediction. Model performance under different variable
combinations (e.g., with/without red blood cell parameters)
showed the integrated model had the highest AUC (0.781 vs.
0.752 without RDW/RBC).

3.3 Construction of the logistic regression
model for predicting DIC in sepsis patients

“Renaldisease” (chronic kidney disease), “SOFA” (Sequen-
tial Organ Failure Assessment score), “neutrophilsAbs” (ab-
solute neutrophil count), “neutrophils” (neutrophil percent-
age), “MCHC” (mean corpuscular hemoglobin concentration),
“RDW” (red blood cell distribution width), “RBC” (red blood
cell count), “INR” (international normalized ratio), “bilirubin”
(total bilirubin), and “age” were identified as independent pre-
dictive factors for the occurrence of DIC in sepsis patients. The
specific multivariate logistic regression model for predicting
DIC in sepsis patients is presented in Table 3. Below is a

nomogram as shown in Fig. 2.

3.4 ROC curve analysis of the predictive
model
The AUC of the prediction model is 0.781, and the sensitivity
and specificity are 68.9% and 75.3%, respectively. The predic-
tion effect of themodel is good and the consistency is good, and
it has a good diagnostic efficiency for DIC in sepsis patients.
See Table 4, Figs. 3,4 for details.

4. Discussion

Disseminated intravascular coagulation (DIC) is a common
and potentially life-threatening complication observed in in-
fectious diseases. In this study, a total of 3586 patients were
included, among whom 1311 patients had sepsis complicated
by DIC, accounting for 35.56% of the cohort. This proportion
is consistent with findings from previous studies, which have
reported rates ranging from 30% to 50% [14]. Coagulation
activation and inflammatory responses are fundamental reac-
tions of the host in combating infection during septic shock and
also underlie the pathogenesis of DIC, albeit with detrimental
effects on the host. Through multivariate logistic regression
analysis, this study identified 10 independent risk factors for
DIC in sepsis patients, including the Sequential Organ Fail-
ure Assessment (SOFA) score, international normalized ratio
(INR), bilirubin, red blood cell distribution width (RDW),
red blood cell count (RBC), absolute neutrophil count (Neu-
trophils Abs), age, chronic kidney disease (Renal disease),
mean corpuscular hemoglobin concentration (MCHC), and
absolute monocyte count (Monocytes Abs).
The findings of this study indicate that the SOFA score, INR,

and total bilirubin are independent predictive factors for the
risk of DIC in sepsis patients. Consistent with our results, Iba
et al.’s [15] study also demonstrated a significant correlation
between the SOFA score and DIC resolution, suggesting that
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FIGURE 1. Relationship between Log(λ) and binomial deviance in LASSO regression.

TABLE 3. Multivariate logistic regression model for predicting DIC in sepsis patients.
Predictor variable β SE Wald χ2 p OR 95% CI
Renaldisease −0.286 0.097 8.707 0.003 0.751 0.621–0.908
SOFA 0.103 0.010 111.393 <0.001 1.109 1.088–1.130
Neutrophils Abs −0.038 0.005 49.345 <0.001 0.963 0.953–0.973
Neutrophils −0.010 0.002 19.31 <0.001 0.990 0.985–0.994
MCHC 0.140 0.024 32.627 <0.001 1.150 1.096–1.206
RDW 0.093 0.015 37.006 <0.001 1.098 1.065–1.131
RBC −0.532 0.049 115.801 <0.001 0.587 0.533–0.647
INR 0.301 0.034 78.739 <0.001 1.351 1.264–1.444
Bilirubin 0.024 0.010 6.346 0.012 1.024 1.005–1.044
Age −0.006 0.003 5.158 0.023 0.994 0.989–0.999
Constant −4.853 0.991 23.975 <0.001 0.008 -
SOFA: Sequential Organ Failure Assessment; MCHC: mean corpuscular hemoglobin concentration; RDW: red blood cell
distribution width; RBC: red blood cell count; INR: international normalized ratio; SE: standard error; OR: odds ratio; CI:
Confidence Interval.

organ dysfunction and coagulation disorders are the primary
mechanisms underlying the development of DIC in sepsis
patients. The SOFA score, recognized as the gold standard for
assessing the degree of organ dysfunction in sepsis patients,
exhibits a strong correlation with the risk of DIC, rooted in
the core pathophysiological mechanisms of sepsis: systemic
inflammatory responses leading to endothelial cell injury, mi-
crothrombus formation, and fibrinolysis inhibition, thereby
triggering an imbalance in the coagulation-anticoagulation sys-
tem [16]. Studies have shown that for every one-point increase
in the SOFA score, the risk of DIC rises by approximately
11%, indicating that the cumulative effect of organ failure

may directly activate the coagulation cascade through the re-
lease of tissue factors and pro-inflammatory cytokines [17].
Additionally, patients with high SOFA scores often exhibit
concomitant hepatic and renal dysfunction, further impairing
the synthesis of anticoagulant proteins and exacerbating DIC
progression. An elevated INR reflects abnormalities in the
extrinsic coagulation pathway and serves as a critical indicator
for DIC diagnosis [18]. In sepsis, endotoxins and inflam-
matory mediators upregulate tissue factor (TF) expression,
promoting the formation of prothrombinase complexes and
accelerating thrombin burst, leading to the consumption of
coagulation factors and prolonged prothrombin time (PT) [19].
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FIGURE 2. Nomogram.

TABLE 4. Diagnostic value analysis of the predictive model for identifying DIC in sepsis patients.
Predictor variable Cut-off AUC Standard error p 95% CI Sensitivity (%) Specificity (%)
Age 60.500 0.548 0.010 <0.001 0.528–0.567 43.6 64.2
Renaldisease - 0.516 0.010 0.107 0.497–0.536 78.3 25.0
SOFA 9.500 0.638 0.009 <0.001 0.619–0.656 56.1 62.0
Neutrophils Abs 6.325 0.621 0.010 <0.001 0.602–0.641 42.6 78.2
Neutrophils 71.350 0.566 0.010 <0.001 0.546–0.586 33.3 79.5
MCHC 33.150 0.556 0.010 <0.001 0.536–0.576 44.0 65.6
RDW 15.750 0.638 0.010 <0.001 0.620–0.657 56.8 63.4
RBC 2.975 0.670 0.009 <0.001 0.652–0.688 53.1 72.7
INR 1.450 0.761 0.008 <0.001 0.745–0.778 81.2 66.7
Bilirubin 1.250 0.697 0.009 <0.001 0.679–0.715 59.2 70.6
Predictive_Model 0.366 0.781 0.008 <0.001 0.766–0.797 68.9 75.3
SOFA: Sequential Organ Failure Assessment; MCHC: mean corpuscular hemoglobin concentration; RDW: red blood cell
distribution width; RBC: red blood cell count; INR: international normalized ratio; AUC: area under the curve; CI:
Confidence Interval.
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FIGURE 3. ROC curve of the predictive model for identifying DIC in sepsis patients. SOFA: Sequential Organ Failure
Assessment; MCHC: mean corpuscular hemoglobin concentration; RDW: red blood cell distribution width; RBC: red blood cell
count; INR: international normalized ratio; neutrophilsAbs: absolute neutrophil count.

FIGURE 4. Calibration curve.
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For every 0.1-unit increase in INR, the risk of DIC increases by
35%, underscoring the importance of dynamic INRmonitoring
for early identification of coagulation disorders [20]. The
association between decreased absolute monocyte count and
DIC risk aligns with Wang et al. [21], who found monocyte-
derived TF expression correlates with coagulation activation.
Notably, when INR exceeds 1.5, the risks of both bleeding and
thrombotic events in patients rise concurrently, necessitating
a comprehensive assessment incorporating platelet counts and
fibrinogen levels [22]. Our study further revealed that when
bilirubin levels exceed 1.25 mg/dL, the risk of DIC signifi-
cantly increases, suggesting that bilirubinmay serve as an early
warning marker for hepatogenic coagulation abnormalities.
Impaired liver function leads to reduced synthesis of coagula-
tion factors (such as fibrinogen and prothrombin), exacerbating
coagulation disorders. Bilirubin, through oxidative stress,
damages vascular endothelial cells and promotes microthrom-
bus formation. Hemolysis (e.g., microangiopathic hemolysis)
releases free hemoglobin, further depleting haptoglobin and
activating the coagulation system [23].
The findings of this study demonstrate a significant associa-

tion between RDW, RBC,MCHC, and the risk of DIC in sepsis
patients, suggesting that erythrocyte abnormalities and micro-
circulatory disturbances play crucial roles in the progression
of DIC. An elevated RDW reflects increased heterogeneity in
RBC volume. Chronic inflammatory states suppress erythro-
poietin responsiveness, leading to ineffective erythropoiesis
and impaired RBCmaturation. Microvascular thrombosis trig-
gers mechanical hemolysis, releasing procoagulant substances
(such as Adenosine Diphosphate and phospholipids), while
oxidative stress damages the stability of the RBC membrane
[24]. In this study, patients with an RDW ≥15.75% ex-
hibited a nearly 10% increase in the risk of DIC, implying
that RDW may serve as an indirect marker of the crosstalk
between inflammation and coagulation. A decreased RBC
count was negatively correlated with the risk of DIC, which
may be attributed to direct causes such as coagulation-related
consumption or bleeding events leading to anemia [25]. When
the RBC count was <2.975 × 1012/L, the risk of DIC de-
creased by approximately 41%. This reduction might be asso-
ciated with earlier interventions, such as blood transfusions or
erythropoiesis-stimulating agents, in patients with severe ane-
mia, necessitating further validation incorporating treatment
factors. An elevatedMCHC reflects hemoglobin concentration
within erythrocytes, often due to dehydration or hyperosmolar
states causing RBC shrinkage, which increases blood viscosity
and microcirculatory resistance. MCHC serves as a diagnostic
indicator for DIC through its impact on abnormal blood flow
variations [26].
This study demonstrates that Neutrophils Abs and Mono-

cytes Abs are closely associated with DIC in septic patients.
A decline in Neutrophil Abs suggests immunosuppression
or bone marrow reserve depletion. In sepsis, neutrophils
contribute to microthrombus formation through neutrophil ex-
tracellular trap formation (NETosis), and their excessive con-
sumption may lead to impaired pathogen clearance capacity,
exacerbating secondary infections and coagulation disorders
[27]. When Neutrophil Abs fall below 6.325× 109/L, the risk
of DIC increases by 3.7%. Monitoring dynamic changes in

these counts holds significant value for assessing the infection-
coagulation vicious cycle. Similarly, reduced Monocyte abs
are correlated with increased DIC risk. Monocytes activate the
extrinsic coagulation pathway by expressing TF, while their
apoptosis or immune depletion weakens pathogen clearance
capacity. Dysregulated monocyte-endothelial cell interactions
further exacerbate endothelial damage. Dynamic monitor-
ing of monocyte counts has potential value for predicting
coagulation-immune imbalance [28].
The study also revealed that advanced age and chronic

kidney disease (CKD) are inversely associated with DIC risk,
contradicting previous assumptions. The primary reasons in-
clude: elderly patients often die from underlying diseases
before progressing to DIC, immune senescence mitigates in-
flammatory responses and coagulation activation, and earlier
initiation of restrictive treatment in clinical practice reduces
iatrogenic coagulation disorders. For CKD patients, earlier re-
ceipt of renal replacement therapy (RRT) clears inflammatory
mediators and uremic toxins, while the accompanying platelet
dysfunction counteracts hypercoagulability. Combined with
adjusted anticoagulant dosing, this reduces bleeding risks [29,
30]. These findings suggest that DIC risk assessment models
need to be optimized by incorporating age stratification.
This study constructed a concise and highly interpretable

predictive model by combining LASSO regression with logis-
tic modeling. In comparison to existing models, our study
is the first to incorporate “red blood cell distribution width
(RDW)” into the predictive framework. As an indirect marker
of inflammation and oxidative stress, an elevated RDW may
contribute to the progression of DIC by promoting endothe-
lial dysfunction, providing a new direction for mechanistic
research. Our model, based on multidimensional data from
the MIMIC-IV database (including demographics, laboratory
results, and treatment measures), is the first to integrate ery-
throcyte parameters (such as RDW and RBC) and absolute
neutrophil count, thereby addressing the limitations of tradi-
tional studies that focused solely on coagulation function. The
model achieved an area under the curve (AUC) of 0.781, which
outperformed previous single-indicator models (e.g., INR with
an AUC of 0.761) or small-scale cohort studies (AUC = 0.740)
[31]. The model demonstrated a good balance between sensi-
tivity (68.9%) and specificity (75.3%), surpassing the Japanese
Association for Acute Medicine DIC criteria [32, 33], making
it suitable for early clinical screening. Indicators such as the
SOFA score and INR can be dynamically monitored in the
ICU, enabling real-time risk prediction through data updates
and supporting personalized interventions.
However, this study also has certain limitations. Firstly, it

is based on retrospective data, which may introduce selection
bias (e.g., exclusion of patients with >20% missing data).
Secondly, therapeutic measures such as glucocorticoids and
fluid resuscitation may influence the risk of DIC, but due to
the complexity of confounding factors, they were not included
in the model, necessitating further stratified analysis. Lastly,
the ratio of the control group to the observation group was
approximately 2:1, which may introduce data imbalance. Al-
though logistic regression was used in this study, models in-
sensitive to imbalance (e.g., random forests, gradient boosting
trees such as eXtreme Gradient Boosting or Light Gradient
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Boosting Machine) generally perform better in such scenarios
and could be considered in future studies to optimize predictive
performance. Future research should focus on: (1) multicen-
ter prospective validation; (2) head-to-head comparison with
existing scoring systems (e.g., SIC score); and (3) exploring
model performance in specific subgroups (e.g., elderly or CKD
patients).

5. Conclusions

The ten risk factors identified in this study encompass
multidimensional pathological processes, including
inflammatory responses, coagulation disorders, organ
dysfunction, and hematological abnormalities, aligning
closely with the “dual-pathway mechanism” of sepsis-induced
DIC (where inflammation drives coagulation, and coagulation
exacerbates inflammation). Notably, the combined application
of traditional coagulation indicators (such as INR and platelet
count) with novel markers (such as RDW and MCHC)
can enhance the sensitivity and specificity of early DIC
diagnosis. This model provides ICU physicians with a
quantitative tool for early identification of high-risk patients
and initiation of targeted interventions (such as anticoagulation
therapy and organ support). Future multicenter prospective
studies are needed to validate the independent contributions
and interactions of these factors and to explore targeted
intervention targets.
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