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Abstract
Background: Emergency department (ED) crowding is a well-documented issue that
significantly contributes to delays in critical care interventions, including antibiotic
administration. Although previous studies have explored the effects of crowding,
the specific role of nursing workload in such delays remains underexplored. This
study aimed to develop a machine learning (ML) model to predict delays in antibiotic
administration by integrating nursing workload data from electronic health records
(EHRs) alongside ED crowding metrics. Methods: We conducted a retrospective
analysis of EHR data from a single-center ED, focusing on nursing-specific workload
indicators such as the frequency of nursing procedures. Models were developed
using three variable groups (National Emergency Department Overcrowding Scale
(NEDOCS)-only, workload-only, and combined NEDOCS/workload) across three
ML algorithms (Poisson regression, Random Forest (RF) and eXtreme Gradient
Boosting (XGBoost)). Each developed model was evaluated on an unseen test
dataset using performance metrics, including root mean square error (RMSE), adjusted
R2 and mean absolute error (MAE). Results: A total of 63,831 ED visits were
recorded during the study period, with an average of 0.83 instances of delayed
antibiotic administration occurring per hour (approximately once every 50 minutes).
Models incorporating workload-related variables consistently outperformed those using
NEDOCS-only variables. The combined NEDOCS/workload models demonstrated the
best performance, with both the RF and XGBoost models yielding RMSE = 0.907,
adjusted R2 = 0.120 and MAE = 0.712 on the test dataset. XGBoost was selected as
the best model owing to its computational efficiency and interpretability. Conclusions:
To the best of our knowledge, this is the first study to integrate nursing workload data into
an ML model to predict delays in antibiotic administration in the ED. The study findings
underscore the significant effect of nursing workload on timely care delivery, suggesting
that alleviating nursing workload could reduce delays in antibiotic administration and
improve patient outcomes.
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1. Introduction

The primary objective of the emergency department (ED) is to
provide timely and effective care to patients in need of urgent
medical attention. However, ED crowding remains a persistent
challenge [1, 2], often leading to delays in care and negatively
affecting patient outcomes [3]. One of the key ways in which
crowding disrupts care delivery is by imposing an excessive
workload on ED providers [4].
A significant consequence of ED crowding is the delay in

antibiotic administration, which can contribute to preventable

mortality [5–7]. Previous research has demonstrated that for
patients with sepsis, each hour of delayed antibiotic admin-
istration increases the odds of mortality by approximately
4% [8]. Moreover, a recent review further reinforced the
association between ED crowding and delayed antibiotic ad-
ministration [9]. Given that antibiotic administration relies
heavily on nursing involvement, it is crucial to examine the
effects of nursing workload on these delays—an aspect largely
overlooked in existing studies.

Notably, most ED crowding indices fail to account for the
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role of human resources. Metrics such as the National Emer-
gency Department Overcrowding Score (NEDOCS) and the
Emergency DepartmentWork Index (EDWIN) primarily focus
on physical and patient-related factors [10, 11]. Although
human resource factors are indirectly measured and reflected
through metrics such as the “time of the last patient called
from the waiting room” in NEDOCS and “the number of
physicians on duty” in EDWIN [12, 13], these measures do not
fully capture the level of crowding experienced by healthcare
providers [14]. Therefore, it is essential to incorporate nursing
workload as a key factor to comprehensively assess the effect
of crowding on ED care delivery.
Measuring nursing workload is inherently complex, as

it is influenced by multiple interacting factors, including
staffing levels, work patterns, and patient acuity [15–17].
Traditional workload assessment methods often require
observers or imposes additional burdens on nurses. However,
electronic health records (EHRs) offer a novel approach to
systematically quantifying nursing workload [18]. Given
that nurses document various patient care activities—
including assessment, diagnosis, planning, intervention
and evaluation—EHR data can be leveraged to provide
a comprehensive representation of nursing workload.
Therefore, we utilized EHR data to estimate nursing workload
by analyzing the frequency and timing of documented nursing
procedures.
Additionally, we employed machine learning (ML) tech-

niques alongside traditional Poisson regression models to pre-
dict delays in antibiotic administration. ML algorithms, such
as Random Forest (RF) and eXtreme Gradient Boosting (XG-
Boost), are particularly effective in capturing complex and
non-linear relationships, making them well-suited for analyz-
ing nursing workload and its effect on delays in antibiotic
administration. Furthermore, we utilized SHapley Additive
exPlanations (SHAP) analysis to interpret the contributions of
specific nursing activities to these delays.
This study had two primary aims: (1) to develop and validate

an ML model that predicts delays in antibiotic administration
by integrating nursing workload data, and (2) to assess the
goodness of fit of the developed algorithms compared to the
NEDOCS to determine the predictive value of nursing data. By
incorporating EHR-derived workload metrics and leveraging
advanced predictive modeling, this study aimed to provide a
more comprehensive understanding of how nursing workload
contributes to delays in time-sensitive ED care.

2. Materials and methods

2.1 Study setting
We conducted a retrospective data analysis at a tertiary aca-
demic hospital in Seoul, South Korea. The study site was a 67-
bed ED with an annual average of 75,000 visits. Patients who
visited the ED between 01 January and 31 December 2022,
were included in the study.
To provide a comprehensive overview of ED performance,

we included all patient populations, including adults, children,
and deceased patients. This broad inclusion was essential for
accurately evaluating the total nursing workload, ensuring a

complete assessment of nursing activities and their associated
workload within the ED setting. However, we excluded pa-
tients who did not enter the treatment area, those who visited
the ED for non-medical purposes (e.g., obtaining medical
documents), and those who were immediately transferred to
other departments (e.g., delivery room).

2.2 Input variables
2.2.1 Workload
In our previous study [18], we identified 70 commonly per-
formed nursing procedures in the ED and evaluated the work-
load associated with each procedure using the National Aero-
nautics and Space Administration Task Load Index (NASA-
TLX) instrument. To evaluate how daily practices at the study
site were reflected in the EHRs, we conducted in-depth inter-
views with two nurses who had over 10 years of experience in
the ED. During the interviews, 24 nursing procedures were ex-
cluded because their records could not be traced in the Clinical
Data Warehouse (CDW) of the study site. Subsequently, we
specified the timing of the remaining nursing procedures for
individual patients by conducting a retrospective analysis of
data extracted from the CDW, which contained records of 46
nursing actions. Finally, the data were aggregated to represent
the frequency of procedures performed per hour in the ED.

2.2.2 NEDOCS
To quantify ED crowding, we selected the NEDOCS as the
benchmark model owing to its widespread use in emergency
medicine [19–22], and the constraints imposed by the retro-
spective study design. Alternative indices, such as Real-time
Emergency Analysis of Demand Indicators or EDWIN, could
not be computed because of data limitations, makingNEDOCS
the most feasible metric for this study. The NEDOCS score
was calculated using the formula established by Weiss et al.
[13]:

−20 + 85.8 × (Total pt)/(ED Beds)

+ 600 × (Boarding pt)/(Hospital Beds)

+ 13.4 × V ent pt adj + 0.93 ×Max boarding

+ 5.64 ×Max waiting

Where:
● Total pt: total number of patients currently present in the

ED.
● ED Beds: total number of licensed ED beds (67 in this

study).
● Boarding pt: number of patients boarding in the ED while

awaiting inpatient bed assignment.
● Hospital Beds: total number of accredited hospital beds

(2162 in this study).
● Vent pt adj: number of patients receiving mechanical

ventilation in the ED (capped at two).
● Max boarding: longest boarding time (in hours) a patient

has remained in the ED after the decision to admit, awaiting
inpatient bed assignment.
● Max waiting: longest waiting time (in hours) a patient has
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spent in the waiting room before initial physician assessment.

2.3 Outcome: delay in antibiotic
administration
The outcome variable was defined as the hourly frequency of
cases in which antibiotic administration for suspected infec-
tions exceeded 1 hour after prescription. This metric serves
as a key quality indicator for ED performance and reflects the
burden on medical staff caused by crowding, which affects
both the preparation and administration of prescribed antibi-
otics. Given that the input and output variables were measured
as frequencies, no missing values were present in the dataset.

2.4 Model development and evaluation
process
2.4.1 Data splitting and feature selection
The preprocessed dataset was randomly divided into training
and test sets using a 7:3 ratio (Fig. 1). Poisson regression
was conducted to identify key variables among the 46 nursing
procedure, as the outcome variable represents the number of
events occurring within a specific time and space [23]. The
Poisson regression model was developed in two steps. First,

we performed univariate Poisson regression on the training
set for each predictor. Second, we developed a multivariate
Poisson regression model using the variables identified as
statistically significant in the univariate analysis. Predictors
that remained statistically significant in the multivariate model
(p < 0.05) were designated as “workload-only variables”.

2.4.2 Defining variable groups
To comprehensively assess model performance, we compared
three different variable groups: NEDOCS-only, workload-
only, and combined NEDOCS/workload. The NEDOCS-only
group included traditional ED crowdingmetrics, the workload-
only group included the nursing procedure variables identified
through Poisson regression, and the NEDOCS/workload group
combined both sets of variables to assess whether the integra-
tion of workload data improved prediction accuracy.

2.4.3 Training models with traditional analysis
and machine learning
Both the multivariate Poisson regression and ML models were
trained using the defined variable groups. ML, a key compo-
nent of Artificial Intelligence, enables pattern recognition in
data and predictive modeling. Compared to traditional ana-
lytical methods, ML algorithms are generally more effective

FIGURE 1. Model development process. NEDOCS: national emergency department overcrowding score; XGBoost: eXtreme
gradient boosting.
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in handling complex, non-linear relationships [15]. For this
study, we selected two widely used ML algorithms—RF and
XGBoost—both of which have demonstrated strong predictive
performance in similar medicinal applications [24–26].
RF and XGBoost ML algorithms were selected to predict

the hourly frequency of antibiotic administration delays. RF
is an ensemble of learning method that constructs multiple
decision trees using randomly selected subsets of the data and
features [27]. XGBoost is a scalable, tree-based algorithm
that uses gradient boosting, sequentially building decision trees
while correcting previous errors [28]. To identify the optimal
parameters for each model, we implemented a grid search
in combination with five-fold, ten-repeated cross-validation.
A total of nine models were developed by combining three
different algorithms (Poisson regression, RF and XGBoost)
with three variable groups (NEDOCS-only, workload-only and
NEDOCS/workload).
All developed models were evaluated on an unseen

test dataset using three performance metrics: root mean
square error (RMSE), adjusted R2, and mean absolute
error (MAE). To evaluate performance differences across
algorithms, we first assessed normality and homogeneity of
variance, then applied either analysis of variance (ANOVA)
or the Kruskal-Wallis H-test, depending on the results.
Additionally, SHAP analysis was conducted to interpret the
contributions of individual features to the model’s predictions
[29]. All data preprocessing, model development and
evaluation were performed using Python 3.10 (available at
https://docs.python.org/3.10/reference/) [30].

3. Results

3.1 Data characteristics
Fig. 2 illustrates the eligibility process used in this study.
This study included 45,896 patients with a total of 63,831
ED visits (Table 1). Patient acuity was assessed using the
Korean Triage and Acuity Scale (KTAS), the official triage
system employed in South Korean EDs [31–33]. The KTAS
categorizes patients into five levels, with Level 1 representing
the highest urgency and Level 5 indicating the lowest. The
frequency of delayed antibiotic administration observed in the
ED was 0.83 occurrences per hour.
Of the 8760 total records, 6132 (70%) were allocated to the

training dataset, whereas 2628 (30%) were assigned to the test
dataset. No statistically significant differences were observed
between the two datasets. During the 1-year study period, 42
types of nursing procedures were performed 1,977,268 times,
averaging 31.6 procedures per patient visit. The three most
frequently performed nursing procedures were nursing record
entry (26.6%), verification of physicians’ orders (16.2%) and
vital sign assessment (13.8%) (Supplementary Table 1).

3.2 Poisson regression analysis for
significant variable selection
Univariate Poisson regression analysis identified 28 nursing
procedures as statistically significant predictors. Subsequent
multivariate Poisson regression analysis refined this selection
to nine, which were determined as workload-only group vari-

ables: (1) verification of physicians’ orders, (2) intravenous
medication administration, (3) explanation of the emergency
treatment process, (4) Foley catheterization, (5) simple dress-
ing, (6) application of low-flow oxygen therapy, (7) subcuta-
neous and intradermal injection, (8) application of high-flow
nasal cannula, and (9) intramuscularmedication administration
(Supplementary Table 2).

3.3 Machine learning models
Model performance varied based on the inclusion of
nursing workload data (Table 2). Models incorporating
workload-related variable groups (workload-only and
NEDOCS/workload groups) consistently outperformed
those incorporating the NEDOCS-only variable group
across all algorithms. Evaluation on the test dataset
demonstrated that both the RF and XGBoost models using
the NEDOCS/workload variable group achieved identical
performance (RMSE = 0.907, adjusted R2 = 0.120 and MAE
= 0.712). XGBoost was selected as the best model owing to
its computational efficiency and interpretability, as confirmed
through SHAP analysis. Among all predictors, verification
of physicians’ orders had the greatest influence (SHAP
value = 0.165), indicating its strong positive effect on model
performance. Other significant contributors included the total
number of patients (Total pt) and maximum waiting time (max
waiting), with SHAP values of 0.095 and 0.039, respectively.
Beyond relative importance, the SHAP plot (Fig. 3) illus-

trated the directional effect of various factors on antibiotic
administration delays. Among all predictors, verification of
physicians’ orders had the strongest influence. A consistent
pattern was observed across all major variables—including
verification of orders, total patient count, maximum wait-
ing time, and number of boarding patients. Higher values
(shown in red) were associated with increased delay predic-
tions, whereas lower values (shown in blue) corresponded
with decreased predicted delays. Notably, an increase in the
verification of physicians’ orders was associated with greater
delays in antibiotic administration.

4. Discussion

4.1 Principal findings
This study successfully developed and validated an ML model
to predict delays in antibiotic administration in the ED. First,
although numerous studies have appliedML to predict sepsis in
the ED—primarily focusing on prognosis and diagnosis [34],
we concentrated on the operational aspects of care delivery.
Specifically, we identified which nursing interventions and
ED crowding factors contribute to delayed antibiotic admin-
istration using nursing data. Second, although the relationship
between ED crowding and delays in antibiotic administration
has been extensively studied [9], to the best of our knowledge,
our study is the first to highlight the pivotal role of nursing
workload in this process. The integration of nursing-specific
workload data in our model provided a unique perspective on
the influence of nursing demands on timely antibiotic delivery,
an aspect previously overlooked in crowding metrics. Finally,
we developed a predictive model for timely care delivery

https://docs.python.org/3.10/reference/
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FIGURE 2. Eligibility process. ED: emergency department; NEDOCS: national emergency department overcrowding scale.

TABLE 1. General characteristics of study time.
Variables All patient visit (N = 63,831)
Age (yr), m ± SD 48.04 ± 24.68
Male, N (%) 32,182 (49.58%)
Female, N (%) 31,649 (50.42%)
Initial Korean Triage and Acuity Scale

Level 1, N (%) 405 (0.63%)
Level 2, N (%) 4390 (6.88%)
Level 3, N (%) 30,282 (47.44%)
Level 4, N (%) 24,757 (38.79%)
Level 5, N (%) 2706 (4.24%)

Not in Medical Purpose, N (%) 1293 (2.03%)
Timestamps (N = 8760)

Train (N = 6132) Test (N = 2628) p-value
Total number of patients present in the ED, m ± SD 57.55 ± 15.32 58.07 ± 15.51 0.148
Number of boarding patients awaiting admission, m ± SD 14.53 ± 8.36 14.79 ± 8.63 0.185
Longest boarding time after admission decision (h), m ± SD 38.91 ± 28.89 38.25 ± 28.19 0.327
Longest waiting time before initial physician assessment (h), m ± SD 2.19 ± 2.39 2.25 ± 2.49 0.307
Number of patients receiving mechanical ventilation, m ± SD 1.01 ± 0.7 0.99 ± 0.7 0.405
Rate of antibiotic administration delays (per hour), m ± SD 0.82 ± 0.98 0.84 ± 0.97 0.470
m: mean; SD: standard deviation; N: number; h: hours; ED: emergency department.
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TABLE 2. Model performance evaluation.
Variable group Algorithm Test set

RMSE [95% CI] Adjusted R2 [95% CI] MAE [95% CI]
NEDOCS-only

Poisson regression 0.941 [0.940–0.942] 0.057 [0.056–0.058] 0.743 [0.742–0.743]
Random forest 0.931 [0.930–0.932] 0.077 [0.076–0.077] 0.731 [0.730–0.732]
XGBoost 0.931 [0.930–0.932] 0.076 [0.075–0.076] 0.730 [0.729–0.731]

Workload-only
Poisson regression 0.912 [0.911–0.913] 0.113 [0.112–0.113] 0.717 [0.717–0.718]
Random forest 0.915 [0.914–0.916] 0.106 [0.105–0.107] 0.716 [0.716–0.717]
XGBoost 0.914 [0.913–0.915] 0.108 [0.107–0.109] 0.714 [0.714–0.715]

NEDOCS and Workload
Poisson regression 0.908 [0.907–0.909] 0.119 [0.118–0.119] 0.715 [0.715–0.716]
Random forest 0.907 [0.906–0.908] 0.120 [0.119–0.121] 0.712 [0.711–0.712]
XGBoost 0.907 [0.906–0.908] 0.120 [0.119–0.121] 0.712 [0.711–0.712]

p-value 0.03 0.04 0.03
RMSE: root mean square error; CI: confidence interval; MAE: mean absolute error; NEDOCS: national emergency department
overcrowding score; XGBoost: eXtreme gradient boosting.

FIGURE 3. SHAP plot for XGBoost model. Total pt: Total number of patients present in the emergency department (ED);
Boarding pt: Number of patients boarding in the ED while awaiting inpatient bed assignment; Vent pt adjusted: Number of
patients receiving mechanical ventilation (up to 2); Max boarding: Longest boarding time (in hours) after admission decision,
while awaiting inpatient bed assignment; Maxwaiting: Longest waiting time (in hours) in the waiting room before initial physician
assessment; SHAP: SHapley Additive exPlanations.
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that applies to all patients requiring antibiotic administration,
rather than being restricted to patients with severe conditions,
such as sepsis or septic shock. By including a broad range
of clinical conditions (e.g., open fractures, neutropenic fever,
infective endocarditis, intra-abdominal infections and bacterial
meningitis), this study demonstrated that nursing workload
significantly influences care delivery across diverse clinical
presentations. These findings provide a valuable foundation
for future research aimed at improving nurses’ care delivery
processes and optimizing timely antibiotic administration in
the ED.

4.2 Importance of nursing workload in
antibiotic administration
Among the models evaluated, those incorporating only nursing
workload variables outperformed the NEDOCS-only model,
with the combined NEDOCS/workload model demonstrat-
ing the best predictive performance. The most frequent and
workload-intensive nursing procedure was nursing record en-
try, followed by the verification of physician orders. Key
factors most frequently associated with delays in antibiotic
administration included verifying orders, total number of pa-
tients, maximum waiting time, administration of intravenous
medication and explanation of emergency treatment processes.
Although crowding metrics typically highlight patient vol-

ume and waiting times, they rarely account for the strain
on nursing resources, despite the crucial role nurses play in
antibiotic administration [35]. Furthermore, patient volume
and waiting times alone do not fully reflect the added com-
plexities introduced by high patient acuity and hospital ca-
pacity constraints [36]. For instance, a critically ill patient
awaiting a bed at the intensive care unit demands significantly
more nursing attention than a stable patient, yet both count
equally in total volume metrics. Moreover, when ED beds are
unavailable, critically ill patients may be boarded in waiting
rooms, sometimes requiring care to begin in non-designated
areas. These hidden challenges and systemic bottlenecks can
dramatically increase nursing workload, underscoring the need
for a more comprehensive approach to assessing the true effect
of “crowding” on patient outcomes.
Our findings support the need to incorporate nursing-

specific workload indicators when predicting delays in
antibiotic administration. Previous research aligns with this
conclusion—Fee et al. [37] found that ED overcrowding
disproportionately affects nurses administering antibiotics.
Additionally, Roberts et al. [38] identified excessive patient
workload as a key barrier for nurses to initiate timely antibiotic
therapy in patients with septic shock. By integrating these
nursing-specific factors, our study highlights the importance
of moving beyond conventional crowding metrics to gain
more accurate and actionable insights into ED operational
challenges.

4.3 Interpreting the machine learning
model results
Our methodology aligns with feature engineering in ML,
where domain expertise informs the selection of robust and
context-relevant variables. Traditional ED crowding metrics

rarely incorporate nursing workload indicators; however,
we explicitly included these indicators based on clinical
knowledge. The integration of nursing procedures and their
frequencies facilitated the improvement of the model’s ability
to capture the real-world complexity of ED operations. This
approach contributed to the superior performance of the
combined NEDOCS/workload model compared to models
relying solely on traditional crowding metrics.
The interpretability of our final XGBoost model was exam-

ined using SHAP analysis, which quantified the magnitude and
direction of each factor’s effect on antibiotic administration
delays. Verification of physicians’ orders had the highest
effect (SHAP value = 0.165), followed by total patient count
(0.095) and maximum waiting time (0.039). The SHAP plot
consistently showed that higher values for these variables were
associated with increased delays, underscoring the substantial
role of nursing workload in ensuring timely antibiotic admin-
istration.
Notably, the “verification of physicians’ orders” variable did

more than simply count prescriptions; it captured the time and
cognitive effort nurses devote to interpreting and confirming
newly generated orders in the fast-paced ED environment.
This workload had a greater effect on predicting delays than
traditional crowding indicators, such as total patient volume
and maximum waiting times, further emphasizing the critical
role of nursing-specific tasks in determining the timeliness of
care.

4.4 Practical approaches to ED nursing
workload management
In the present study, delays in antibiotic administration oc-
curred approximately once every 50 minutes (0.83 times per
hour). Reducing nursing workload is pivotal in mitigating
these delays, particularly in overcrowded EDs. With the grow-
ing number of boarding patients awaiting admission, crowding
has become a widespread challenge in EDs [36]. To miti-
gate delays in antibiotic administration in this setting, various
strategies have been proposed, including implementing sepsis
screening tools at triage [39–41], establishing hospital-wide
timely care protocols [42], and improving team communi-
cation [41]. Although these interventions address common
workflow inefficiencies in EDs, they alone are insufficient if
hospital capacity bottlenecks remain unaddressed. Improving
patient flow must extend beyond ED bed management and
incorporate a hospital-wide approach to optimizing bed avail-
ability.
Beyond these broader strategies, our study highlights ac-

tionable short-term improvements within the ED. Our results
showed that verifying physician orders had the greatest effect
on delayed care. Given that these essential nursing tasks can
not be eliminated, efforts should focus on minimizing the
workload associated with each task. Unnecessary workload is
imposed on nurses when laboratory tests that could otherwise
be performed concurrently are ordered separately or when
prescriptions require additional clarification. For instance, a
routine test or medication may unexpectedly disappear from a
prescription, the criteria for conducting a prescribed test may
be unclear, or an antibiotic may be changed without an expla-
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nation. Although physicians typically make these decisions
based on sound clinical reasoning, failing to communicate the
rationale at the time of prescription lead to additional inquiries
via phone calls or text messages, ultimately increasing the
workload for both nurses and physicians.
To address this issue, leveraging the EHR system to provide

a comprehensive overview of relevant changes—such as recent
prescription alterations and associated laboratory tests—can
help reduce nurses’ cognitive burden. Furthermore, requiring
physicians to provide a brief rationale for prescription changes
can minimize unnecessary communication, thereby alleviating
workloads for both nurses and physicians. Ultimately, these
improvements should be pursued through a team-based ap-
proach, with nurses and physicians collaborating continually to
develop more efficient strategies in managing care in crowded
ED environments.
Furthermore, the findings of this study can drive real-world

operational improvements. Real-time workload monitoring
could enable healthcare organizations allocate additional staff
to areas where ED crowding threatens patient care quality.
Currently, most EDs lack dynamic staffing adjustments for
sudden, unpredictable workload surges. However, implement-
ing a monitoring system could enable flexible, data-driven
responses to these challenges. At the study-site ED, charge
nurses currently identify high-intensity zones and allocate ad-
ditional staff as needed. Implementing an automated system
to track workload-related metrics, as identified in this study,
would enable proactive decision-making, allowing for opti-
mized staffing in response to surges in nursing workload.

4.5 Limitations
Although this study offers valuable insights, it had several
limitations. First, its single-center design may limit the gener-
alizability of the findings, potentially introducing geographic
and demographic biases in the models. Expanding future
studies to multiple centers could enhance external validity
and broader applicability. Second, certain nursing procedures
known to contribute to high workload such as interruptions and
coordination activities were not included, as they are essen-
tial but not recorded. Incorporating these factors into future
models would provide a more comprehensive understanding
of ED care delivery. Finally, relying on retrospective records
of nursing activities limited the ability to capture real-time
changes in workload, potentially introducing temporal bias.
Despite thorough clinical validation, the quality and complete-
ness of historical medical records may have influenced the
reliability of our ML models. For instance, although some
nurses documented skin tests before antibiotic administration,
others did not. Additionally, shift changes occasionally led
to incomplete documentation, particularly when nurses had to
prioritize emergency patient care, potentially resulting in an
underestimation of workload data. Although fall prevention
activities were recorded, we could not verify whether all nurses
consistently implemented these precautions. Future research
should incorporate observational studies to assess the align-
ment between actual nursing workloads and EHR-extracted
data. Furthermore, establishing a standardized method for
recording nursing activities could enhance the accuracy of real-

time workload assessments in nursing practice.

5. Conclusions

We developed an ML model that incorporates both nursing
procedures and crowding data, enabling a more responsive
approach to the challenges of ED crowding. By leveraging
variables that can be automatically extracted from EHRs, the
modelminimizes additional workload for healthcare providers.
Moreover, by directly capturing the workload experienced
by ED care teams, this model offers a promising tool for
improving operational efficiency, reducing delays in antibiotic
administration, and ultimately enhancing patient care.
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