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Abstract
Background: Sepsis remains a leading cause of morbidity and mortality, particularly
among elderly patients, for whom urinary tract infections (UTIs) are a significant
trigger. This study applies machine learning methods to identify early predictors of
sepsis in elderly patients presenting with UTIs in the emergency department (ED).
Methods: This retrospective study analyzed elderly patients with UTIs over five years,
excluding those with sepsis at presentation, secondary infections or incomplete records.
Logistic regression, Generalized Additive Modeling (GAM), Least Absolute Shrinkage
and Selection Operator (LASSO) regression, and a Decision Tree model were evaluated
for sepsis prediction within 72 hours. Model performance was assessed using area under
the curve (AUC), Brier scores, and Net Reclassification Improvement. Results: Of 1176
patients, 139 (11.8%) developed sepsis within 72 hours. Independent predictors included
age (adjusted odds ratio (aOR) 1.10, 95% confidence interval (CI) 1.05–1.14), blood urea
nitrogen (BUN) (aOR 1.03, 95% CI 1.00–1.05), C-reactive protein (CRP) (aOR 1.04,
95% CI 1.03–1.05), creatinine (aOR 1.79, 95% CI 1.11–3.14), respiratory rate (aOR
1.10, 95% CI 1.05–1.16), temperature (aOR 2.52, 95% CI 1.65–4.38), and lower systolic
blood pressure (aOR 0.95, 95% CI 0.92–0.97). GAM (AUC 0.954) and LASSO (AUC
0.942) outperformed logistic regression (AUC 0.792, p< 0.001). GAM showed superior
discrimination over the Decision Tree (AUC 0.915, p = 0.046). Conclusions: This study
highlights that clinical parameters including age, BUN, CRP, creatinine, respiratory
rate, body temperature and systolic blood pressure are independent risk factors for early
sepsis in elderly patients with UTIs. These factors should be carefully considered when
assessing elderly patients presenting to the ED for sepsis risk.
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1. Introduction

Despite advances in early warning systems, changing diagnos-
tic criteria and increased awareness, sepsis continues to be a
leading cause of poor clinical outcomes [1, 2]. In 2016, the
definition of sepsis was updated to include the concepts of
Sepsis-Related Organ Failure Assessment (SOFA) and quick-
SOFA (qSOFA), thereby clarifying the criteria for organ dys-
function in sepsis [3]. Elderly patients, due to factors like
polypharmacy, chronic diseases, and altered physiology and
metabolism, are particularly vulnerable to developing organ
dysfunction [4, 5]. Tools such as SOFA and qSOFA, are ef-
fective at identifying patients with existing organ dysfunction
[6]. However, these tools are primarily designed to assess the
presence and extent of existing organ dysfunction at the time
of evaluation.
Urinary tract infections (UTIs) are common in the elderly

and often manifest atypically, including altered mental status

or functional decline, posing diagnostic challenges in the emer-
gency department (ED) [7]. The lack of specific and reliable
risk scores tailored to the ED setting, combined with the in-
sufficient identification of factors influencing poor outcomes,
complicates the management of these patients. Although sev-
eral risk models exist for sepsis prediction, most have not
been validated in elderly patients with UTIs—a population
with distinct clinical trajectories. Furthermore, conventional
tools are largely based on linear associations and may overlook
complex, interaction-driven risk patterns common in geriatric
presentations. Machine learning (ML) methods such as gen-
eralized additive models (GAM), least absolute shrinkage and
selection operator (LASSO), and decision tree algorithms of-
fer the potential to uncover complex, non-linear relationships
among clinical features, which may enhance early risk strat-
ification beyond traditional models [8, 9]. These approaches
have shown promise in improving prediction accuracy while
maintaining clinical interpretability [10]. However, their ap-
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plication specifically in elderly patients with UTIs remains
limited, with few studies directly comparing ML models to
conventional regression in this context.
This study, therefore, aims to identify predictors of early

sepsis within 72 hours in elderly patients presenting to the
ED with UTIs. The predictive performance of ML models
including GAM, LASSO regression, and decision trees is
evaluated against multivariable logistic regression.

2. Methods

2.1 Study design and setting
This retrospective observational study was conducted in
the ED of a tertiary care hospital. Ethical approval for the
study was obtained from Mardin Artuklu University Non-
Interventional Clinical Research Ethics Committee (date: 05
November 2024; approval number: 2024/11-12). Due to the
retrospective nature of the study, the ethics committee waived
the requirement for informed consent. The research was
conducted in accordance with the Declaration of Helsinki.

2.2 Study population
Patients aged over 65 years who presented to the ED with
a diagnosis of urinary tract infection (UTI) between January
2019 and December 2023 were eligible for inclusion. The
diagnosis was based on the International Classification of
Diseases (ICD)-10 codes assigned by emergency physicians
at the time of admission, in line with institutional protocols,
as detailed in Supplementary Table 1. These codes were
retrospectively reviewed to identify eligible cases. Inclusion
criteria encompassed patients with typical UTI symptoms,
such as dysuria, urgency or frequency. These symptoms
were supported by urinalysis findings. These included urine
microscopy showing ≥10 white blood cells/µL, and positive
dipstick tests for leukocyte esterase and nitrites. We also
included patients with atypical symptoms often seen in older
adults, such as altered mental status, general malaise or func-
tional decline. These cases were eligible only if they did not
meet Sepsis-3 criteria at presentation [7, 11]. Exclusion criteria
included a diagnosis of sepsis upon ED arrival, defined by
Sepsis-3 as an acute increase of two ormore points in the SOFA
score; the presence of concurrent secondary infections such as
pneumonia or cellulitis; and incomplete clinical or laboratory
data. All diagnoses were made by the treating physician
and verified retrospectively through ICD-10 coding, without
modification, by the study team. Urine blood and protein were
defined as positive if dipstick testing or microscopy confirmed
hematuria or proteinuria, respectively. The presence of urine
microorganisms referred to bacteria observed via microscopic
urinalysis.

2.3 Data quality and management
Data quality was ensured through independent extraction by
two reviewers. Inter-observer reliability was assessed using
a random sample of 120 patient records, representing approx-
imately 10 percent of the cohort, which were independently
reviewed by both assessors. Every variable included in the

study—demographics, comorbidities, vital signs, laboratory
values and clinical assessments—was cross-checked between
reviewers. Agreement was excellent, with Cohen’s Kappa for
categorical variables reaching 0.94 and intraclass correlation
coefficients (ICCs) for continuous variables exceeding 0.98.
Discrepancies were resolved by a third reviewer blinded to
the initial assessments. A prespecified multiple imputation
protocol was established to address missing data if any variable
exceeded 5% missingness. However, as no variable exceeded
the 5% missing data threshold, complete case analysis was
used without the need for imputation.

2.4 Data collection and outcome measures

Demographic data, chronic comorbidities, vital signs at pre-
sentation, Charlson Comorbidity Index scores, laboratory pa-
rameters at presentation, urine analysis parameters, and the
development of sepsis within 72 hours were recorded. Data
were retrieved from the hospital information management sys-
tem. All data were anonymized before analysis to maintain
patient confidentiality. Data collection was performed by the
researchers to ensure consistent and accurate information gath-
ering. Body temperature values were obtained retrospectively
from the triage vital signs recorded at ED presentation, but
the method of measurement was not consistently specified in
the electronic medical records. Sepsis was defined, according
to the Sepsis-3 criteria, as life-threatening organ dysfunction
caused by infection, indicated by an acute increase of ≥2
points in the SOFA score [3]. The SOFA score was calcu-
lated by assigning a score from 0 to 4 for dysfunction in six
organ systems—respiratory, coagulation, liver, cardiovascu-
lar, kidney and nervous—resulting in a total score ranging
from 0 to 24 [12]. The primary outcome of the study was
the development of sepsis within 72 hours of the ED visit.
SOFA scores were retrospectively calculated using clinical
and laboratory parameters recorded in the electronic health
record (EHR) at the time of admission. All values used in
the SOFA calculation were derived from physician and nurse
documented data. Parameters not measured at admission were
not included in the SOFA score calculation. If a parameter
required for SOFA calculation was not measured, a default
score of 0 was assigned for that component, as per standard
retrospective sepsis study methodology. This reflects clinical
practice, where unmeasured values are often considered nor-
mal unless clinically indicated. Sepsis development within 72
hours was determined by reviewing subsequent clinical and
laboratory data recorded in the EHR during hospitalization. If
a patient was discharged before 72 hours, their last available
documented SOFA score was used to assess progression. The
secondary outcomes assessed included mortality, intensive
care unit (ICU) admission, vasopressor use, antibiotic changes
and clinical deterioration during follow-up. Mortality was
defined as death occurring at any point during hospitalization
or follow-up. ICU admission was recorded for patients who
required transfer to intensive care. Vasopressor use was de-
fined as the administration of any vasoactive medication (e.g.,
norepinephrine, dopamine or vasopressin) due to hypotension.
Antibiotic change was recorded when a patient’s antimicrobial
regimen was modified during hospitalization due to treatment
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failure, antimicrobial resistance or clinical deterioration. Clin-
ical deterioration was defined as a worsening of hemodynamic
parameters, respiratory distress, or the need for escalation of
care despite appropriate antibiotic therapy. These outcomes
were extracted from electronic medical records and verified by
independent reviewers. All predictor variables, including vital
signs, laboratory data and clinical features, were recorded at
the time of ED presentation.

2.5 Sample selection
For observational studies involving logistic regression anal-
ysis, it is generally recommended that the sample size in-
cludes at least 100 patients, plus an additional 50 patients for
each independent variable in the final model. Alternatively,
a minimum of 500 patients is advised to ensure statistical
robustness [13]. Given the study’s aim and available data, the
sample size of 1176 patients was deemed appropriate to meet
these requirements without compromising the reliability of the
results.

2.6 Analysis
All statistical analyses were performed using R (version 4.4.2,
R Foundation for Statistical Computing, Vienna, Austria).
Descriptive statistics were used to summarize baseline charac-
teristics. Categorical variables were reported as counts (n) and
percentages (%), while continuous variables were presented
as medians with interquartile ranges (IQR) or means with
standard deviations (SD), as appropriate. The Kolmogorov-
Smirnov test, accompanied by visual inspections using his-
tograms, was applied to assess the normality of continuous
variables. Univariable logistic regression analysis was per-
formed to assess the association between individual variables
and sepsis development within 72 hours. Continuous variables
were dichotomized at their median values and results were
expressed as odds ratios (OR) with 95% confidence intervals
(CI). Variables in the univariable analysis with an OR whose
95% CI did not include 1 were selected for inclusion in the
multivariable logistic regression model to identify indepen-
dent predictors while controlling for confounding factors. A
stepwise backward elimination approach was applied to re-
tain variables with p < 0.05 in the final model, and results
were reported as adjusted ORs (aOR) with 95% CI. All ML
models used the same predictors identified as significant in
multivariable logistic regression to ensure comparability. This
approach ensured that any differences in performancewere due
to the modeling technique rather than discrepancies in variable
selection. GAM, LASSO regression, and decision trees were
implemented using age, BUN, CRP, creatinine, systolic blood
pressure, respiratory rate, and temperature as predictors. These
variables were chosen based on their statistical significance
in the logistic regression model, allowing for direct com-
parison across methods. For logistic regression, continuous
variables were dichotomized at their median values to facilitate
interpretability and address non-linearity. In contrast, ML
models (GAM, LASSO and decision tree) were constructed
using continuous predictors without transformation, allowing
for non-linear relationships assessment and threshold-based
effects to emerge naturally.

GAM was employed to capture potential non-linear rela-
tionships among these predictors. LASSO regression was
applied to assess whether penalization techniques could im-
prove predictive accuracy while maintaining interpretability.
A decision tree model was developed to explore threshold-
based risk stratification for bedside utility. Model perfor-
mance was evaluated using area under the receiver operating
characteristic curve (AUC), Brier scores for calibration, and
DeLong’s test for statistical comparisons between models. To
assess the robustness of the logistic regression model, 5-fold
cross-validation was performed. The dataset was randomly
divided into five equal parts, and the model was trained on
four parts and tested on the remaining part in an iterative
manner. The AUC was calculated for both the training and
testing datasets in each fold to evaluate the discriminatory
ability of the model. The overall AUC values were also
calculated by pooling the results across folds, with 95% CIs.
Comparative model performance for GAM, LASSO, and de-
cision tree models was evaluated using the test dataset from the
80/20 train-test split. This allowed for direct comparison using
identical data inputs. Logistic regression was also evaluated
via 5-fold cross-validation for internal validation, with its final
performance also reported on the test set for consistency across
models. Multicollinearity among predictors was checked using
the variance inflation factor (VIF), with a threshold of VIF
<5 considered acceptable. Missing data were minimized by
careful data extraction. The handling of missing data followed
a predefined strategy approved by the ethics committee. If
missing values were present in fewer than 5% of cases for a
given variable, multiple imputation would have been applied
to maintain statistical robustness [14]. For variables with more
than 5% missing data, affected cases would have been ex-
cluded from the analysis to minimize potential bias. However,
in the final dataset, no variable exceeded the 5% threshold for
missingness, and therefore, all available data were included in
the analysis without the need for imputation or case exclusion.
Summary of missingness across predictors and outcome is
given in Supplementary Table 2.

3. Results

3.1 Incidence of sepsis and univariable
analysis

In this study, 1176 elderly patients presenting with UTI to the
ED were analyzed (Fig. 1), of which 139 patients (11.8%) de-
veloped sepsis within the first 72 hours, whereas 1037 patients
(88.2%) did not. Among patients who developed sepsis, the
median SOFA score at the time of diagnosis was 4 (IQR 3–6),
while themedian SOFA score in the non-sepsis group remained
1 (IQR 0–1). Univariable analysis of patient characteristics and
vital signs (Table 1) showed that older age (OR 1.15, 95% CI
1.12–1.19), diabetes mellitus (OR 3.18, 95% CI 2.18–4.61),
and dementia (OR 2.86, 95% CI 1.76–4.54) were associated
with a higher risk of sepsis. Patients with higher respiratory
rates (OR 1.32, 95% CI 1.27–1.38), altered mental status (OR
2.55, 95% CI 1.78–3.66), and elevated temperature (OR 2.09,
95% CI 1.72–2.55) had increased odds of sepsis. In contrast,
higher systolic (OR 0.86, 95% CI 0.84–0.88) and diastolic
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FIGURE 1. Patient flowchart.

TABLE 1. Patient characteristics and vital signs.

Variable Non-Sepsis Group (n = 1037)
(Median (IQR) or Count (%))

Sepsis Group (n = 139)
(Median (IQR) or Count (%)) OR (95% CI)

Age (yr) 72 (68–77) 80 (74–87) 1.15 (1.12–1.19)
Sex (Female) 646 (62.3%) 86 (61.9%) 0.98 (0.68–1.42)
Hypertension 330 (31.8%) 37 (26.6%) 0.78 (0.52–1.15)
Diabetes Mellitus 186 (17.9%) 57 (41.0%) 3.18 (2.18–4.61)
Coronary Artery Disease 125 (12.1%) 14 (10.1%) 0.82 (0.44–1.42)
Chronic Kidney Disease 75 (7.2%) 13 (9.4%) 1.32 (0.68–2.38)
Dementia 84 (8.1%) 28 (20.1%) 2.86 (1.76–4.54)
Congestive Heart Failure 25 (2.4%) 2 (1.4%) 0.59 (0.09–2.01)
Stroke 58 (5.6%) 10 (7.2%) 1.31 (0.63–2.51)
Malignancy 25 (2.4%) 7 (5.0%) 2.15 (0.84–4.81)
Systolic BP (mmHg) 123 (116–140) 107 (98–123) 0.86 (0.84–0.88)
Diastolic BP (mmHg) 81 (71–85) 66 (59–79) 0.54 (0.47–0.60)
Heart Rate (bpm) 79 (67–92) 77 (61–98) 1.00 (0.99–1.01)
Respiratory Rate (breaths/min) 17 (13–20) 25 (15–32) 1.32 (1.27–1.38)
Altered Mental Status 320 (30.9%) 74 (53.2%) 2.55 (1.78–3.66)
Temperature (◦C) 36.7 (36.1–37.7) 37.3 (36.3–38.4) 2.09 (1.72–2.55)
Charlson Comorbidity Index 3 (3–4) 4 (3–5) 1.82 (1.54–2.16)
BP: Blood pressure; IQR: Interquartile range; OR: odds ratios; CI: confidence intervals.

blood pressure (OR 0.54, 95% CI 0.47–0.60) were negatively
associated with sepsis.
Univariable analysis of laboratory parameters (Table 2)

identified elevated CRP (OR 4.44, 95% CI 2.93–6.91), higher
glucose (OR 3.00, 95% CI 2.04–4.50), BUN (OR 2.08, 95%
CI 1.44–3.05), creatinine (OR 1.92, 95% CI 1.32–2.82),
and lactate (OR 1.90, 95% CI 1.32–2.76) as significant risk
factors. Higher platelet count (OR 0.52, 95% CI 0.36–0.74)
was inversely associated with sepsis. The presence of

urinary microorganisms (OR 2.10, 95% CI 1.47–3.01) was
a significant predictor, while urinary blood and proteinuria
were not significantly associated with sepsis.

3.2 Multivariable modeling

Logistic regression analysis identified age (aOR 1.10, 95%
CI 1.05–1.14), BUN (aOR 1.03, 95% CI 1.00–1.05), CRP
(aOR 1.04, 95% CI 1.03–1.05), creatinine (aOR 1.79, 95%
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TABLE 2. Laboratory parameters associated with sepsis.

Variable Non-Sepsis Group (n = 1037)
(Median (IQR) or Mean ± SD)

Sepsis Group (n = 139)
(Median (IQR) or Mean ± SD) OR (95% CI)

WBC (103/µL) 8447 ± 1934 9217 ± 2441 1.46 (1.02–2.10)
Glucose (mg/dL) 111.4 ± 42.6 144.1 ± 56.7 3.00 (2.04–4.50)
Hgb (g/dL) 10.4 ± 2.3 10.0 ± 3.1 0.87 (0.61–1.24)
PLT (103/µL) 233 (177–287) 191 (126–259) 0.52 (0.36–0.74)
Lactate (mmoL/L) 1.9 ± 1.0 2.4 ± 1.2 1.90 (1.32–2.76)
BUN (mg/dL) 25 (19–30) 33 (20–45) 2.08 (1.44–3.05)
CRP (mg/L) 35.8 (26.0–45.2) 77.8 (45.2–106.4) 4.44 (2.93–6.91)
Creatinine (mg/dL) 1.1 (0.7–1.7) 1.5 (0.9–2.2) 1.92 (1.32–2.82)
Urine Blood 635 (61.2%) 84 (60.4%) 0.97 (0.68–1.40)
Urine Protein 136 (13.1%) 25 (18.0%) 1.45 (0.89–2.29)
Urine Microorganism 378 (36.5%) 76 (54.7%) 2.10 (1.47–3.01)
IQR: Interquartile range; CI: Confidence interval; WBC: White blood cell count; BUN: Blood urea nitrogen; CRP: C-Reactive
protein; PLT: Platelet count; Hgb: Hemoglobin; SD: standard deviations; OR: odds ratios.

CI 1.11–3.14), systolic blood pressure (BP) (aOR 0.95, 95%
CI 0.92–0.97), respiratory rate (aOR 1.10, 95% CI 1.05–1.16),
and temperature (aOR 2.52, 95% CI 1.65–4.38) as statistically
significant predictors of sepsis development (Table 3). Age,
elevated BUN, CRP, creatinine, increased respiratory rate,
and elevated temperature were associated with higher odds of
developing sepsis, while lower systolic BP was also indepen-
dently associated with sepsis risk. Factors such as Diabetes
Mellitus, Dementia, white blood cell count, glucose, platelets,
lactate, urine microorganism, altered mental status, and Charl-
son comorbidity index were not statistically significant in the
multivariable analysis for predicting sepsis development.

TABLE 3. Adjusted odds ratios from multivariable
logistic regression for predictors of sepsis development.
Variable Adjusted ORs (95% CI)
Age 1.10 (1.05–1.14)
Blood Urea Nitrogen 1.03 (1.00–1.05)
C-Reactive Protein 1.04 (1.03–1.05)
Creatinine 1.79 (1.11–3.14)
Systolic Blood Pressure 0.95 (0.92–0.97)
Respiratory Rate 1.10 (1.05–1.16)
Temperature 2.52 (1.65–4.38)
OR: Odds ratio; CI: Confidence interval.

The area under the curve (AUC) for the multivariable logis-
tic regressionmodel was evaluated for both training and testing
datasets. The overall training AUC was 0.792 (95% CI 0.742–
0.841, p < 0.001), while the overall testing AUC was 0.824
(95% CI 0.733–0.915, p < 0.001) (Table 4). Fold-specific
training AUCs ranged from 0.779 to 0.824, with testing AUCs
ranging from 0.730 to 0.840 across the five folds (Table 4).
To facilitate clinical interpretation, we also analyzed age as a
continuous variable in 10-year increments. In this additional
analysis, a 10-year increase in age was associated with 4.20

times higher odds of sepsis (95% CI 3.22–5.56, p < 0.001).
The goodness-of-fit of the model was evaluated using the Cox
& Snell R Square, Nagelkerke R Square, and the Hosmer and
Lemeshow test. The Cox & Snell R Square was 0.320, and the
Nagelkerke R Square was 0.433. The Hosmer and Lemeshow
test indicated an acceptable fit (Chi-square = 6.654, df = 8, p
= 0.284).

TABLE 4. Area under the receiver operating
characteristic curve for predicted sepsis probabilities.

Variable(s) Training
AUC (95% CI)

Testing
AUC (95% CI)

All 0.792 (0.742–0.841) 0.824 (0.733–0.915)
Fold 1 0.824 (0.785–0.863) 0.730 (0.682–0.778)
Fold 2 0.779 (0.738–0.820) 0.807 (0.759–0.855)
Fold 3 0.792 (0.752–0.832) 0.787 (0.739–0.835)
Fold 4 0.810 (0.771–0.849) 0.747 (0.699–0.795)
Fold 5 0.789 (0.749–0.829) 0.840 (0.792–0.888)
AUC: Area under curve; CI: Confidence interval.

To assess predictive performance, we compared logistic
regression with GAM, LASSO regression and Decision Tree
models (Table 5). The area under the curve (AUC) for the
multivariable logistic regression model was 0.792 (95% CI
0.742–0.841) in the training set and 0.824 (95% CI 0.733–
0.915) in the test set. GAM analysis demonstrated an AUC
of 0.9545 (95% CI 0.9317–0.9773, p < 0.001). Unlike tra-
ditional regression models, GAM allows for smooth, non-
linear relationships between predictors and sepsis risk. As
shown in Fig. 2, the risk of sepsis increases non-linearly with
age, particularly accelerating beyond 78 years. Similarly,
blood urea nitrogen and C-reactive protein exhibit threshold
effects, where risk significantly rises beyond 35 mg/dL and
70 mg/L, respectively. The effect of respiratory rate is also
non-linear, with a notable increase in risk occurring beyond
22 breaths/min. The deviance explained was 63.5%, with
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TABLE 5. Diagnostic performance of predictive models.

Model Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI) F1 Score AUC

(95% CI)
Logistic Regression 0.725

(0.650–0.790)
0.937

(0.921–0.953)
0.640

(0.565–0.715)
0.964

(0.951–0.975)
0.679 0.792

(0.742–0.841)
GAM 0.871

(0.803–0.921)
0.959

(0.946–0.971)
0.742

(0.668–0.808)
0.982

(0.972–0.989)
0.801 0.954

(0.932–0.977)
LASSO 0.906

(0.845–0.949)
0.986

(0.976–0.992)
0.894

(0.831–0.939)
0.987

(0.979–0.993)
0.900 0.942

(0.910–0.974)
Decision Tree 0.856

(0.787–0.910)
0.933

(0.917–0.948)
0.633

(0.560–0.702)
0.980

(0.969–0.988)
0.728 0.915

(0.884–0.946)
GAM: Generalized Additive Model; LASSO: Least Absolute Shrinkage and Selection Operator; PPV: Positive
Predictive Value; NPV: Negative Predictive Value; AUC: Area Under the Curve; CI: Confidence Interval.

FIGURE 2. Predicted effects of age, blood urea nitrogen, C-reactive protein, and respiratory rate on sepsis risk. Partial
effect plots from the Generalized Additive Model showing non-linear associations between predictors and sepsis probability.
Threshold effects for age (>78 years), CRP (>70 mg/L) and BUN (>35 mg/dL) are apparent.

an adjusted R2 of 67.8%, supporting the improved predictive
performance of GAM over logistic regression.

LASSO regression achieved an AUC of 0.9421 (95% CI
0.9103–0.9738). The model retained the key predictors iden-
tified in logistic regression: age, BUN, CRP, systolic blood
pressure, respiratory rate and temperature. The coefficient
paths across different regularization strengths (Fig. 3) illustrate
how predictor importance shifts as the penalty increases, rein-
forcing the robustness of the selected features. The decision
tree model identified clear stratification thresholds, with CRP
≥70 mg/L, respiratory rate ≥22 breaths/min, and BUN ≥35

mg/dL emerging as the strongest predictors (Fig. 4). The
structure of the decision tree provides an intuitive, rule-based
approach to sepsis risk prediction. Each branching point rep-
resents a clinical cutoff, guiding risk assessment in a stepwise
manner. For instance, patients with CRP levels above 70
mg/L were categorized as high risk, while those with lower
CRP but elevated respiratory rates and BUN levels were also
identified as at-risk subgroups. This visualization supports
clinical interpretation without requiring complex calculations.
The model had an AUC of 0.9152 (95% CI 0.8842–0.9462).
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FIGURE 3. Coefficient paths in least absolute shrinkage and selection operator (LASSO) regression. Each colored line
represents a predictor variable. As the regularization strength increases (log lambda moves right), less informative coefficients
are progressively shrunk toward zero and excluded from the model. This visualization illustrates the variable selection process
and helps identify which predictors remain robust across a range of penalization levels. LASSO: Least Absolute Shrinkage and
Selection Operator.

FIGURE 4. Decision tree model for sepsis prediction. Each node represents a decision point based on a clinical variable and
threshold. The top value in each box is the predicted class (0 = no sepsis, 1 = sepsis). The middle value represents the predicted
probability of sepsis for patients in that node, and the bottom percentage indicates the proportion of the total population falling
into that category. Green boxes represent terminal nodes predicting sepsis (class 1), and blue boxes represent terminal nodes
predicting no sepsis (class 0).
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3.3 Machine learning performance
Comparative analysis using DeLong’s test revealed statisti-
cally significant differences in AUC performance across the
models. GAM significantly outperformed logistic regression
(p < 0.001), as did LASSO (p < 0.001). Additionally, GAM
demonstrated a statistically significant improvement over the
decision tree model (p = 0.046). However, no significant
difference was observed between LASSO and the decision tree
(p = 0.235) or between GAM and LASSO (p = 0.548). These
results suggest that GAM and LASSO are both superior to
logistic regression, while GAM also holds a slight edge over
the decision tree. For calibration assessment, Brier scores
were computed, with LASSO exhibiting the best calibration
(Brier Score = 0.0240), followed by GAM (0.0331), logistic
regression (0.0367) and the decision tree (0.0379). While
GAM had the highest AUC, LASSO demonstrated superior
specificity (0.986 vs. 0.959), positive predictive value (PPV)
(0.894 vs. 0.742), and F1 score (0.900 vs. 0.801), suggesting
improved performance in identifying true positive cases with
fewer false positives.
Net Reclassification Improvement (NRI) and Integrated

Discrimination Improvement (IDI) analyses further
demonstrated the superior predictive value of GAM compared
to logistic regression. The NRI for GAM versus logistic
regression was 0.1397 (13.97%), indicating an improved
classification of sepsis cases. The decision tree model, while
useful, showed a modest improvement with an NRI of 0.0441
(4.41%). These findings suggest that GAM offers the most
substantial enhancement in predictive accuracy for early
sepsis detection in elderly patients with UTI.

4. Discussion

In this study, we identified several independent risk factors for
early sepsis development in elderly patients who presented to
the ED with UTIs. Notably, increased age, elevated levels of
BUN, CRP, creatinine, heightened respiratory rate and body
temperature, and reduced systolic blood pressure were found
to be significant predictors of sepsis. However, traditional clin-
ical risk stratification methods may be insufficient for timely
identification, as ML-based approaches demonstrated superior
predictive performance. The non-linearity captured by GAM
allows for amore nuanced representation of risk factors, partic-
ularly for age-related acceleration in sepsis risk, while LASSO
provides a streamlined yet effective selection of key predictors.
These models hold potential for real-time application in ED
settings, where rapid risk assessment is critical for optimizing
early intervention.
Age demonstrated a dose-response relationship with sepsis

risk. The GAM model identified an inflection point beyond
78 years, where the risk rose more sharply. This highlights
that even within an elderly population (≥65 years), sepsis
risk continues to rise with each additional year, reinforcing
the need for closer monitoring of older individuals. This
threshold effect is consistent with prior research indicating
that very elderly patients (>80 years) exhibit disproportionate
vulnerability to sepsis-related mortality [15]. These results
suggest that in clinical practice, simply labeling a patient as

“elderly” is insufficient—older individuals within this group
may have vastly different risk profiles.
Renal function markers were among the most consistently

predictive variables across the models. Declining renal func-
tion compromises immune defenses, increasing susceptibility
to severe infections and systemic inflammation [16]. Several
studies have established a direct link between impaired renal
function and an increased risk of infection-related morbidity
and mortality [17, 18]. GAM revealed a threshold effect for
BUN, with sepsis risk increasing disproportionately beyond
35 mg/dL. BUN and creatinine were also independently as-
sociated with early sepsis and showed consistent thresholds
across ML models. Even under penalization, LASSO retained
BUN and creatinine, reinforcing their predictive robustness.
These thresholds may aid bedside decision-making and triage.
While these findings may reflect known clinical risk factors,
the added value of machine learning lies in its ability to refine
prediction through nuanced modeling of their interactions and
thresholds.
Inflammatory markers such as CRP and fever play a crucial

role in sepsis risk assessment and severity stratification [18].
CRP, in particular, demonstrated strong discriminatory ability
[19]. Liu et al. [15] identified 60 mg/L as a critical threshold
for bacterial infections in elderly patients, while Zincircioğlu
et al. [20] found higher CRP levels in septic versus non-septic
elderly patients (88.3 vs. 68.8 mg/L). Notably, GAM analysis
in our study revealed a threshold effect, with sepsis risk sharply
increasing beyond 70 mg/L CRP. Fever’s role in sepsis is less
consistent, as 30–50% of elderly sepsis patients lack a febrile
response [21, 22]. Shimazui et al. [23] found that while
hypothermiawas common, it was not associatedwith increased
mortality. A systematic review of 42 studies reported higher
mortality (47.3%) in hypothermic sepsis patients compared
to 22.2% in febrile patients [24]. Our findings align with
prior literature suggesting a non-linear relationship between
fever and sepsis risk [25]. This variability highlights the
need for comprehensive risk models incorporating multiple
inflammatory markers rather than relying solely on fever for
early sepsis detection.
One of the key challenges in applying artificial intelligence

(AI) to clinical settings is the trade-off between interpretability
and predictive accuracy. While GAM and LASSO demon-
strated higher discrimination in sepsis prediction, Decision
Tree models offer a more intuitive, threshold-based approach
that may be more accessible to frontline clinicians. Although
GAM had the highest AUC, LASSO excelled in specificity,
positive predictive value, and F1 score. This characteristic
may make LASSO more suitable in resource-limited envi-
ronments, where false positives carry clinical or operational
consequences. We acknowledge that stepwise regression, used
in our logistic model, may risk overfitting. This concern
was mitigated by consistent predictor retention across GAM
and LASSO. These differences highlight that model selection
should be guided not only by AUC but also by context-specific
performance metrics. To facilitate comparison, our study
included direct evaluation of all models across multiple statis-
tical metrics, including AUC, Brier score and DeLong’s test.
Future research should focus on the integration of explainable
AI techniques to enhance model transparency, ensuring that
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high-performing models are both interpretable and clinically
actionable. ML-based sepsis risk models could be integrated
into ED workflows to trigger automated alerts and support
early identification of high-risk patients. Integration with
EHR and real-time monitoring systems could enhance early
intervention strategies, reducing time to sepsis recognition and
treatment initiation. However, external validation in multi-
center cohorts is required before widespread implementation.

5. Limitations

This study has several limitations. As a retrospective single-
center study, it was dependent on the accuracy and complete-
ness of existing clinical records, which may introduce data in-
consistencies or missingness and limit generalizability. While
we excluded patients with incomplete data and no variable
exceeded 5% missingness, some parameters (e.g., SOFA com-
ponents) were not universally measured at admission, which
may have affected the capture of dynamic changes over 72
hours. For patients discharged early, the final documented
SOFA score was used to assess sepsis progression, potentially
underestimating post-discharge deterioration. However, most
high-risk patients remained hospitalized. The study did not
include infection etiology or presence of indwelling urinary
catheters and obstructive uropathy as independent variables,
although these are not always available in the ED setting.
Finally, external validation and decision curve analysis were
not performed. Although our sample met the ≥10 events-per-
predictor rule of thumb, we recognize that more advanced ap-
proaches such as the pmsampsize methodology could enhance
model development in future prospective studies [26].

6. Conclusions

Advanced age, elevated BUN, CRP, creatinine, increased res-
piratory rate and temperature, and low systolic BP were iden-
tified as independent predictors of early sepsis in elderly pa-
tients with UTI. While logistic regression provided useful risk
stratification, ML models such as GAM and LASSO outper-
formed it by capturing threshold effects and complex patterns,
highlighting their added value in early detection and clinical
decision support. Future studies should focus on real-time
integration of predictivemodels to optimize EDworkflows and
early intervention.
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