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Abstract

This article looks at the development of artificial intelligence (Al)-enhanced ultrasound-
guided regional anesthesia simulation platforms and their use in medical education. As
the complexity of regional anesthesia procedures grows, traditional teaching methods
fail to address the clinical urgency of reducing preventable complications, such as
inadvertent vascular puncture (reported incidence: 4.1-6.8%) and incomplete nerve
blockade. These complications not only compromise patient safety, but also highlight a
critical “expertise gap” between theoretical knowledge and practical execution. These
Al-enabled simulation platforms can provide more realistic clinical scenarios, helping
medical students and residents translate theoretical knowledge into practical skills.
This review provides a comprehensive analysis of the current technologies, educational
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outcomes, and their role in enhancing clinical competency in regional anesthesia.
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1. Background

Ultrasound-guided regional anesthesia (UGRA) has revolu-
tionized perioperative care by enabling real-time visualiza-
tion of nerves and vasculature, reducing complication rates
compared with landmark-based techniques. Despite its clin-
ical superiority, mastery of UGRA requires many supervised
procedures—a threshold unattainable for many trainees due
to limited clinical opportunities [1, 2]. Traditional education
models, reliant on didactic lectures and passive observation,
fail to address the cognitive demands of integrating ultrasound
interpretation with needle manipulation, leading to a high error
rate in anatomical identification among novices. Effectively
training healthcare providers in this technique remains a signif-
icant challenge. Conventional UGRA instruction remains con-
strained by three critical limitations: (1) Absence of objective,
real-time performance metrics during phantom practice [3], (2)
Inability to simulate rare anatomical variations representing
clinical cases [4], and (3) Fixed training protocols that fail to
adapt to individual learning curves—a factor contributing to
trainees requiring extended clinical supervision [5]. These sys-
temic shortcomings directly correlate with preventable com-
plications, including inadvertent vascular puncture (4.1-6.8%
incidence) and incomplete nerve blockade [2, 6].

The integration of artificial intelligence (AI) into medical
simulation offers transformative solutions to these challenges
[7-10]. Contemporary Al-enhanced platforms combine three

key technological advances: (1) Deep learning-driven image
interpretation: In a retrospective validation study, convolu-
tional neural networks (CNNs) were reported to achieve 92.7%
accuracy in differentiating nerve fascicles from artifact sig-
nals in real-time ultrasound streams, surpassing novice prac-
titioner performance [ 11]; (2) Physics-engine reinforced learn-
ing models simulating tissue deformation patterns across many
anatomical variants [2], and (3) Adaptive difficulty algorithms
that dynamically adjust simulation complexity based on trainee
multimodal inputs (eye-gaze tracking, probe pressure sensors,
and hand kinematics) [12—14]. These platforms utilize smart
algorithms to analyze performance data and provide imme-
diate feedback, improving the learning process. Al’s ability
to identify anatomical structures during ultrasound scans has
been tested in studies [15]. Several pilot studies and small
cohort comparisons suggest that Al systems can improve the
accuracy of anatomical identification and overall practitioner
performance, especially for those with less experience [ 16, 17].
This indicates that Al not only helps in learning technical skills,
but also builds confidence and self-efficacy in trainees [ 11, 18].
This paradigm shift addresses the critical need for deliberate
practice environments that bridge the “expertise gap” between
theoretical knowledge and psychomotor execution.

To provide a methodologically rigorous foundation for
this review, a systematic literature search was conducted
across PubMed, Institute of Electrical and Electronics
Engineers (IEEE) Xplore, and Google Scholar for relevant
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publications from 2010 to 2024. The search strategy
employed a combination of keywords and Boolean operators,
such as (“artificial intelligence” OR “deep learning”) AND
(“ultrasound-guided regional anesthesia” OR “UGRA”)
AND (“simulation” OR “medical education”), and was
restricted to English-language articles.  Guided by the
Patient/Population, Intervention, Comparison, Outcome
(PICO) framework, this review examines how Al-enhanced
UGRA simulation platforms are redefining education through
four key dimensions: the technological foundations of current
platforms; validation studies comparing Al-assisted vs.
traditional training outcomes; implementation challenges in
curriculum integration; and future directions for personalized
competency development. The synthesis of this literature
reveals that AI’s data-driven approach can identify individual
learning patterns and pitfalls, allowing for customized
instruction that improves training quality and helps ensure
practitioners can perform UGRA safely and effectively [18].

2. Methods

2.1 Search strategy

The study selection process is summarized in the Preferred
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(PRISMA) flow diagram (see Fig. 1).

A comprehensive literature search was performed across
PubMed, IEEE Xplore, and Google Scholar for articles pub-
lished between 01 January 2010 and 30 June 2024. The search
utilized a combination of keywords and Boolean operators (see
Table 1).

2.2 Study selection and eligibility criteria

Studies were included if they met the following PICOS cri-
teria: Population (P): Medical trainees (students, residents)
or practicing anesthesiologists involved in UGRA training.
Intervention (I): Use of Al-enhanced simulation platforms for
UGRA training. Comparison (C): Traditional training methods
(e.g., didactic lectures, phantom models, and non-Al simula-
tion). Outcomes (O): Measures of skill acquisition, procedural
accuracy, error rates, learning curves, confidence levels, or
clinical performance. Study Design (S): We included random-
ized controlled trials (RCTs), non-randomized comparative
studies, cohort studies, case-control studies, and validation
studies. Exclusion criteria included: Editorials, conference
abstracts without full text, non-English language publications,
and studies not involving Al or simulation.

PICOS Criteria: Clearly defined as follows: Population:
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FIGURE 1. PRISMA flow diagram. Illustrating the study selection process for the systematic review on Al-enhanced UGRA
simulation platforms. Al: artificial intelligence; PICOS: Patient/Population, Intervention, Comparison, Outcome, Study Design.
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TABLE 1. Detailed search strategy by database.

Database
PubMed

Search Query

(“artificial intelligence”’[Mesh] OR “deep learning”[Mesh] OR “machine learning”’[Mesh]) AND

(“ultrasound-guided regional anesthesia” OR “UGRA”) AND (“simulation”’[Mesh] OR “education”[Mesh]

IEEE Xplore

OR “training”[Mesh])
(“Artificial Intelligence” OR “Deep Learning”) AND (“Ultrasound-Guided Regional Anesthesia” OR

“UGRA”) AND (“Simulation” OR “Medical Education”)

Google Scholar

artificial intelligence OR deep learning AND ultrasound-guided regional anesthesia AND simulation OR

medical education

UGRA: Ultrasound-guided regional anesthesia; IEEE: Institute of Electrical and Electronics Engineers;, Mesh: Medical Subject

Headings.

Al-enhanced UGRA simulation platforms; Comparison:
Traditional training methods; Outcomes: Skill acquisition,
error rates, procedural success, and confidence; Study
Designs: RCTs, cohort studies, validation studies, and
comparative trials; Study Selection Process: Inclusion and
exclusion criteria, screening process, and data extraction
methods. A narrative synthesis was performed due to
heterogeneity in outcomes and study designs.

3. Al-enhanced UGRA simulation
platforms: a multi-dimensional
analysis

This review examines how Al-enhanced UGRA simulation
platforms are redefining regional anesthesia education through
four key dimensions: Technological foundations of current
platforms; Validation studies comparing Al-assisted vs. tra-
ditional training outcomes; Implementation challenges in cur-
riculum integration; Future directions for personalized compe-
tency development.

3.1 Technological foundations of current
platforms

3.1.1 The role of machine learning algorithms
in image recognition

Machine learning (ML) algorithms now play a pivotal role
in medical image recognition [19, 20], especially in UGRA.
CNNs are particularly important for accurately identifying
anatomical structures, which is crucial for successful medical
procedures [21, 22]. CNNs can automatically learn spatial
hierarchies from images, allowing them to capture the unique
characteristics of ultrasound images, which vary significantly
in echogenicity and tissue density. In UGRA, CNNs help
recognize anatomical features with high accuracy [22, 23]. In
controlled validation studies, Al systems have demonstrated
the capability to assist anesthesiologists in identifying these
features, with reported success rates as high as 99.7% in
specific, well-defined tasks [24], primarily by reducing iden-
tification errors and improving interpretative confidence for
less experienced practitioners [25, 26]. However, these find-
ings primarily stem from experimental settings and require
confirmation in broader clinical trials [16]. This is especially
helpful for practitioners who are less experienced in anatomical
identification, as the algorithms provide real-time feedback

and highlight critical structures. The application of ML not
only improves the precision of image interpretation but also
reduces the risk of complications, thereby enhancing overall
patient safety [27].

The working process of CNNs involves several stages. First,
in the convolutional layer, filters convolve with the input
ultrasound image to generate feature maps that emphasize
various aspects, such as shape and texture. For example,
these feature maps can learn to highlight sonographic features,
such as the anechoic, rounded shape of blood vessels or the
hyperechoic, fascicular (“honeycomb”) structure of peripheral
nerves, which are critical for accurate anatomical identification
in UGRA [28-30]. Then, pooling layers like max-pooling are
used to reduce the dimensionality of the feature maps, further
optimizing the model’s performance. Beyond ultrasound, ML
is also changing other medical imaging methods, including X-
rays and Magnetic Resonance Imaging (MRI) [31]. CNNs
have shown great potential in automating the detection of
abnormalities, making the diagnostic process more efficient.
For instance, a CNN was used to classify bladder tumors in
cystoscopic images [32, 33], achieving accuracy levels that
sometimes exceed human capabilities, especially when trained
on large datasets [34]. This shows that the integration of
ML in image recognition allows for continuous learning and
adaptation, which is essential in a field where anatomical
variations can significantly impact procedural outcomes [35].
Moreover, the effectiveness of these algorithms is enhanced by
their ability to learn from feedback. For instance, Al systems
can adjust their predictions based on clinician input, refining
their accuracy over time. This dynamic learning process is
critical in medical settings where the stakes are high and the
margin for error is low. Additionally, the use of Al in image
recognition can facilitate personalized medicine by providing
tailored diagnostic insights based on individual patient data,
thus fostering a more patient-centered approach to healthcare

[36].

3.1.2 Al-driven skill acquisition: from
real-time feedback to learning optimization

Deep learning (DL) models, particularly those employing
CNNs and reinforcement learning frameworks, have
revolutionized skill acquisition in UGRA training by
enabling dynamic, personalized feedback mechanisms. These
models analyze procedural performance in real time, offering
immediate corrections for needle trajectory deviations or



suboptimal probe positioning (e.g., “Your needle angle
exceeds 15° from the target nerve bundle”). Preliminary
evidence from simulation-based cohort studies indicates that
such real-time feedback may accelerate skill mastery and
reshape learning curves by targeting individual weaknesses
[37-39]. The adaptive nature of DL models further optimizes
long-term skill retention. By tracking performance metrics
over time (e.g., anatomical identification accuracy, and
procedural duration), Al systems generate tailored training
modules that progressively increase in complexity. This
approach mirrors the “zone of proximal development”
theory in educational psychology, ensuring trainees remain
challenged without becoming overwhelmed. Notably, AI’s
ability to simulate rare clinical scenarios (e.g., aberrant
vascular anatomy) addresses a critical gap in conventional
training, where exposure to such cases is often limited.

3.1.3 Translating AI innovations to clinical
challenges in UGRA

The ultimate value of these technological foundations lies in
their ability to address persistent clinical challenges in UGRA.
For instance, the technical advancements in Al-driven simu-
lation platforms directly address persistent clinical challenges
in UGRA [9, 15, 40, 41]. A prime example is the difficulty
of visualizing anatomical structures in obese patients, where
excessive subcutaneous adipose tissue obscures sonographic
landmarks [42]. CNNs trained on diverse body habitus datasets
can enhance image interpretation accuracy by up to 32% in
high-BMI cohorts compared to unaided human operators [43].
Furthermore, AI’s predictive error correction capabilities miti-
gate risks associated with anatomical variations. For instance,
Al systems can be designed to simulate the clinical conse-
quences of incorrect needle placement (e.g., proximity to a
vessel) based on patient-specific anatomical models, enabling
trainees to internalize safety protocols before encountering
real patients [20, 44]. This symbiosis of technical innovation
and clinical pragmatism positions Al-enhanced simulation as
a vital tool for overcoming the limitations of traditional ap-
prenticeship models. Moreover, Al systems are increasingly
capable of simulating injectate spread patterns, providing feed-
back on whether the local anesthetic is adequately surrounding
the target nerve or potentially diffusing into adjacent tissues,
which is critical for block success and avoiding suboptimal
outcomes.

3.2 Validation studies: AI-assisted vs.
traditional training outcomes

3.2.1 Advantages and challenges of regional
anesthesia

UGRA is now key in anesthesiology [1, 45]. It offers more
benefits than traditional methods. UGRA improves precision
in locating anatomical structures, raising nerve block success
rates and reducing complications like nerve injury and local
anesthetic toxicity [16, 46]. This technique provides real-time
views of target nerves and surrounding areas, helping anes-
thesiologists perform blocks more confidently and accurately.
Additionally, UGRA supports multimodal analgesia, improv-
ing postoperative pain management, reducing opioid use, and
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speeding patient recovery [47]. However, UGRA has many
challenges [1]. Mastering ultrasound technology is difficult,
especially for those used to traditional palpation techniques
[48]. Patient with obesity can also be a problem, as it may
hide anatomical landmarks and complicate visualization [43].
Furthermore, there are risks of adverse events from ultrasound
equipment, such as infections if sterilization protocols aren’t
followed [48]. Ongoing education and training are needed to
ensure the safe and effective use of UGRA in clinical settings.

3.2.2 Limitations of traditional teaching
methods

Traditional anesthesiology teaching often uses lectures
and hands-on training with cadavers or live patients
[49, 50]. Though these methods have long been central
to anesthesiology education, they have significant limitations
[50]. Cadaveric specimens vary in quality and may not reflect
the anatomical variations seen in live patients. This can create
a gap between theoretical knowledge and practical application,
making it hard for students to apply classroom learning in
real-world scenarios. Moreover, traditional methods often
lack interactive elements, leading to lower retention and less
student enthusiasm [51]. This has highlighted the need for
innovative approaches like simulation-based training and
virtual learning environments to better prepare students for
modern practice [52].

3.2.3 Alignment of demand and technological
development

The need for effective pain management in various clinical
settings has driven advancements in ultrasound technology and
its use in regional anesthesia [53, 54]. As healthcare providers
aim to improve patient outcomes and reduce opioid reliance,
UGRA has become more prominent [55, 56]. New ultrasound
techniques, like fascial plane blocks, offer practitioners addi-
tional tools for specific pain management needs, especially in
emergency and outpatient settings [55, 56].

Furthermore, integrating Al into UGRA has the potential to
improve anatomical structure identification and needle place-
mentaccuracy [9, 1 6]. This technological progress matches the
growing focus on personalized medicine, allowing practition-
ers to tailor anesthetic approaches based on real-time imaging
data. The wider availability of ultrasound technology and
the rise of telemedicine also enable remote consultations and
training, expanding UGRA access to underserved areas [56].

3.3 Implementation challenges in
curriculum integration

Despite the technological promise and encouraging early vali-
dation data, the integration of Al-enhanced UGRA simulation
into standardized curricula faces several significant challenges.
The development and procurement of high-fidelity Al simu-
lation platforms represent a substantial financial investment
for institutions, potentially limiting accessibility. Effective
implementation requires educators themselves to be proficient
in both the technology and the pedagogical approach of Al-
enhanced simulation, necessitating dedicated faculty develop-
ment programs. Integrating such technology disrupts tradi-
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tional apprenticeship models and didactic teaching schedules,
requiring careful change management and evidence of clear su-
perior outcomes to gain buy-in from educators and institutions.
Ensuring reliable operation of hardware and software, along
with data security and privacy for trainee metrics, presents
ongoing operational hurdles.

3.4 Design and functionality of simulation
platforms

3.4.1 User-friendliness of the user interface

User interface design in simulation platforms is key for boost-
ing learning, especially in medical training [57, 58]. A user-
friendly interface has an easy-to-understand layout, simple
navigation, and ready access to features. All of these work
together to create a more interesting and effective training
setting. For example, research shows that when users can inter-
act with simulation platforms without difficulty, their learning
outcomes improve significantly [59, 60]. A well-designed in-
terface lessens cognitive load, enabling trainees to concentrate
on learning skills, rather than wrestling with the technology
[61]. User feedback often points to the importance of clear
instructions, responsive controls, and visual aids that guide
them through training. In addition, adding elements like real-
time feedback and performance tracking within the interface
can make users more engaged and motivated. For instance, a
study on a haptic robotic trainer for central venous catheter-
ization found that a personalized user interface was crucial
for effective learning [62], highlighting the importance of user
interface design in simulated ultrasound-guided procedures.
This principle directly extends to the design of UGRA simula-
tion platforms. As simulation platforms develop, continuous
user feedback should be part of the design process. This
ensures interfaces stay in line with user needs and preferences,
creating a more effective educational experience.

3.4.2 Importance of real-time feedback
mechanisms

Real-time feedback mechanisms are essential for the effective-
ness of simulation platforms, especially in medical training
where instant skill application is crucial. They give users
instant insights into their performance, enabling them to adjust
and improve techniques immediately. Research shows that
real-time feedback greatly improves learning by reinforcing
correct actions and correcting errors as they happen. For exam-
ple, in UGRA training, participants receiving real-time feed-
back via a simulation platform had lower error rates and better
procedural skills than those without such feedback [63]. This
instant reinforcement helps solidify learning and promotes skill
retention over time. Moreover, real-time feedback can be
customized to individual learner needs, allowing for a per-
sonalized training experience that targets specific weaknesses.
As technology advances, incorporating sophisticated feedback
systems, like those using Al to analyze performance data,
can further enhance simulation training effectiveness. This
integration not only improves skill acquisition, but also builds
learner confidence, preparing them for real-world applications.

To elucidate the practical setup of an Al-enhanced UGRA
simulation platform, its core components can be described as

an integrated system. Trainees typically interact with a haptic
probe that mimics a real ultrasound transducer and a needle
controller that provides realistic tactile feedback during virtual
tissue puncture. The visual interface displays a simulated
ultrasound image, dynamically generated and augmented in
real-time by Al with color-coded overlays that identify key
anatomical structures, such as nerves (e.g., highlighted in
yellow) and blood vessels (e.g., highlighted in red). A separate
performance dashboard displays key metrics, such as needle
trajectory accuracy, procedure time, and error logs. This
entire system is driven by the underlying Al architecture (as
depicted in Fig. 2), which continuously analyzes the trainee’s
actions via motion sensors and adjusts the scenario difficulty.
This combination of haptic, visual, and quantitative feedback
creates a comprehensive and immersive learning environment
that bridges virtual practice and clinical application.

3.4.3 Training effectiveness of combining
virtual and real-world scenarios

Combining virtual and real-world training scenarios is a pow-
erful approach in simulation-based education, especially in
fields like medicine and surgery [64—06]. This blended learn-
ing model uses the strengths of both environments, giving
learners a safe space to practice complex procedures while
also preparing them for real-life unpredictability. Research
shows that trainees engaging in both virtual simulations and
hands-on practice perform better and retain skills more than
those relying on one method alone [67]. For example, studies
on virtual reality training for surgical procedures found that
participants who first practiced in a virtual environment made
fewer errors and were more precise during actual surgeries
[65, 68]. The ability to simulate various clinical scenarios in
a controlled setting allows learners to develop critical thinking
and decision-making skills without real patient pressures. In
addition, the immersive nature of virtual training can boost
engagement and motivation, making learning more enjoyable
[69, 70]. As institutions adopt this hybrid approach, ongoing
research is vital to refine the integration of virtual and real-
world training, ensuring learners are well-prepared for profes-
sional challenges [71]. The future of medical education lies
in effectively combining these training methods to optimize
learning and ultimately enhance patient care outcomes.

To operationalize this blended learning, a conceptual work-
flow for an Al-enhanced UGRA simulation platform is syn-
thesized from the technologies discussed in this review. This
system integrates real-time ultrasound image analysis with
adaptive scenario generation, enabling trainees to practice both
normal and complex anatomical variations (e.g., obese pa-
tients, and aberrant vasculature). By combining CNN-driven
anatomical recognition, sensor-based performance tracking,
and reinforcement learning for risk prediction, the platform
dynamically adjusts training complexity based on individual
proficiency. Such a design directly aligns with the hybrid
training philosophy discussed above, offering a scalable so-
lution to bridge virtual skill acquisition and real-world clinical
application (Fig. 3).
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FIGURE 2. Conceptual diagram of the Al-enhanced UGRA simulation platform. This schematic illustrates the integrated
system components and their interactions, designed to create an immersive training environment for ultrasound-guided regional
anesthesia (UGRA). The platform bridges the gap between virtual practice and clinical application through four key components:
A (Haptic Probe): Simulates a real ultrasound probe, providing tactile feedback with force feedback technology to mimic
resistance on different tissue surfaces. B (Needle Controller): Reproduces tissue resistance and puncture sensations during needle
insertion, including realistic “breakthrough” feelings and safety mechanisms. C (Visual Display): Renders real-time ultrasound
images enhanced with Al overlay, using color-coding to identify critical anatomical structures (e.g., nerves in blue, and vessels
in red) and display needle trajectory guidance. D (User Interface): Provides performance metrics (e.g., accuracy, time, and angle
deviation) and real-time corrective feedback, along with skill progression analysis and personalized training adjustments. The
system integrates hardware, Al algorithms, and user interfaces to enable realistic simulation and effective skill development. Al:
artificial intelligence; TG: Thyroid Gland; T: Trachea; S: Sternocleidomastoid; CCA: Common Carotid Artery; NL: Longus Colli
Muscle; VB: Vertebral Body; CL: Clavicle; AT: Anterior transverse nodule; PT: Postternal nodule.

3.5 Future directions for personalized
competency development

In education, particularly medical education, statistical analy-
sis of student skill enhancement is key to evaluating teaching
effectiveness. Comparative studies of different teaching meth-
ods can measure student progress in knowledge, clinical skills,
and confidence [72]. Research shows that students taught with
new methods, such as flipped classrooms and simulation-based
training, outperform those taught with traditional methods in
both theoretical and practical assessments [73]. For example,
a study found that students in flipped classrooms scored higher
on multiple-choice tests, showing the method’s effectiveness
in promoting active learning and knowledge retention [74].
Statistical analysis also uses questionnaires to collect student
feedback on teaching methods, providing insights into their
satisfaction and self-efficacy. Studies have found that students
in interactive lecture settings reported higher satisfaction and
better learning outcomes than those in traditional lectures [75].
These data help teachers improve their methods and inform
administrators’ decisions on curriculum reform. Recent pilot
studies and randomized trials suggest that Al-enhanced simu-

lation can reduce error rates by up to 40% and improve first-
attempt success rates in nerve blocks. However, large-scale
RCTs are still needed to confirm these findings and assess long-
term clinical impact.

The integration of Al into UGRA simulation platforms rep-
resents a transformative advancement in medical training and
procedural accuracy. Future iterations of these systems are
anticipated to leverage multimodal data fusion, combining
real-time ultrasound imaging with haptic feedback, patient-
specific anatomical modeling, and adaptive Al algorithms to
create hyper-realistic training environments. Enhanced deep
learning architectures, such as transformer-based networks and
reinforcement learning frameworks, may enable dynamic sce-
nario generation, individualized skill assessment, and predic-
tive error correction tailored to individual learner proficiency.

Academic research should prioritize three key directions:
(1) development of explainable Al (XAI) systems to improve
clinical trust and educational transparency, (2) integration of
multi-omics data for patient-specific risk stratification in sim-
ulated scenarios, and (3) validation of long-term skill retention
through longitudinal studies. Additionally, addressing ethi-
cal considerations in Al bias mitigation and ensuring cross-
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FIGURE 3. Flowchart of the Al-enhanced ultrasound-guided regional anesthesia simulation platform. Focused on
brachial plexus block (covering intermuscular groove approach, axillary approach, and supraclavicular approach, etc.), the
platform expands to regional anesthesia scenarios, such as femoral nerve block and sciatic nerve block, supporting simulations of
both normal anatomy and abnormal anatomy (e.g., obese patients, and abnormal vascular anatomy). It loads ultrasound image data
and real-case databases, utilizing CNN technology for real-time Al image recognition of nerves, blood vessels, and surrounding
tissues. Integrated with pressure and motion-tracking sensors, it collects trainees’ operational data (e.g., probe angle, and puncture
depth) for real-time operation monitoring. A reinforcement learning model analyzes the needle trajectory, predicts puncture risks
(e.g., vessel injury), and offers dynamic correction suggestions. Additionally, an adaptive algorithm adjusts scenario difficulty
dynamically based on trainees’ performance (e.g., simulating increased subcutaneous fat thickness). Ultimately, multidimensional
data—including success rate, time cost, and error types—are used to generate competency radar charts and recommend targeted
training modules, bridging the gap between theoretical knowledge and clinical skill transformation. CNN: Convolutional neural
network.
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population generalizability of training models will be critical
for global applicability. Collaborative efforts between compu-
tational scientists, anesthesiologists, and medical educators are
essential to bridge the translational gap between algorithmic
innovation and clinical adoption.

Responsible integration of Al in medical education requires
addressing key ethical imperatives: (1) Data security through
encryption and regulatory compliance (General Data Protec-
tion Regulation/Health Insurance Portability and Accountabil-
ity Act (GDPR/HIPAA)) for trainee metrics and patient data;
(2) Algorithmic fairness via diverse training datasets and con-
tinuous auditing to prevent demographic bias; (3) Explainable
Al that provides interpretable feedback to overcome “black
box” limitations and build trust. Crucially, Al should augment
rather than replace expert instruction, preserving human over-
sight and ultimate clinical responsibility. These foundations
are essential for developing trustworthy Al that enhances both
education and patient care.

This evolution has the potential to redefine competency-
based training paradigms and establish UGRA simulation as a
cornerstone of precision medical education, pending validation
through rigorous outcome studies. Future studies must rigor-
ously quantify the clinical impact of Al-enhanced simulation
on patient outcomes to secure its role in next-generation anes-
thesiology practice.

Despite the promise of Al-enhanced simulation, several
barriers impede widespread adoption, including high initial
costs, the need for specialized training for educators, and
resistance to integrating technology into traditional training
paradigms.

Furthermore, longitudinal studies are urgently required to
validate whether skills acquired on Al-enhanced simulation
platforms translate into sustained clinical competency and im-
proved patient-centered outcomes, such as reduced complica-
tion rates and enhanced block efficacy in real-world practice.

4. Study limitations

As a narrative review, this article does not follow the sys-
tematic methodology of a systematic review. The selection
of literature was based on the authors’ expertise and a non-
exhaustive search strategy, which may introduce selection
bias.

5. Conclusions

In conclusion, Al-enhanced simulation platforms represent
a promising and rapidly evolving development in medical
education. While early data from pilot and cohort studies are
encouraging, the integration of this technology creates a robust
training environment that must be further evaluated through
high-quality trials. The medical community should embrace
this transformation while mindfully addressing its challenges,
with the ultimate goal of improving educational outcomes and
enhancing patient care.
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